【題目】如圖,已知邊長為2的正三角形ABC頂點(diǎn)A的坐標(biāo)為(0,6),BC的中點(diǎn)Dy軸上,且在點(diǎn)A下方,點(diǎn)E是邊長為2、中心在原點(diǎn)的正六邊形的一個(gè)頂點(diǎn),把這個(gè)正六邊形繞中心旋轉(zhuǎn)一周,在此過程中DE的最小值為( 。

A. 3 B. 4﹣ C. 4 D. 6﹣2

【答案】B

【解析】

首先得到當(dāng)點(diǎn)E旋轉(zhuǎn)至y軸上時(shí)DE最小,然后分別求得AD、OE′的長,最后求得DE′的長即可.

如圖,當(dāng)點(diǎn)E旋轉(zhuǎn)至y軸上時(shí)DE最;

∵△ABC是等邊三角形,DBC的中點(diǎn),

ADBC

AB=BC=2

AD=ABsinB=,

∵正六邊形的邊長等于其半徑,正六邊形的邊長為2,

OE=OE=2

∵點(diǎn)A的坐標(biāo)為(0,6)

OA=6

DE=OA-AD-OE=4-

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,MPNQ分別垂直平分ABAC.

(1)若△APQ的周長為12,BC的長;

(2)BAC105°求∠PAQ的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,ADBCAEBC于點(diǎn)E,ADC的平分線交AE于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過點(diǎn)B,交BC于另一點(diǎn)F.

(1)求證:CD與⊙O相切;

(2)BF24OE5,求tanABC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AEAD,∠ABE=∠ACDBECD相交于O

1)如圖1,求證:ABAC;

2)如圖2,連接BC、AO,請(qǐng)直接寫出圖2中所有的全等三角形(除△ABE≌△ACD外).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)興趣小組在“用面積驗(yàn)證平方差公式”時(shí),經(jīng)歷了如下的探究過程;

1)小明的想法是:將邊長為的正方形右下角剪掉一個(gè)邊長為的正方形(如圖1),將剩下部分按照虛線分割成①和②兩部分,并用兩種方式表示這兩部分面積的和,請(qǐng)你按照小明的想法驗(yàn)證平方差公式.

2)小白的想法是:在邊長為的正方形內(nèi)部任意位置剪掉一個(gè)邊長為的正方形(如圖2),再將剩下部分進(jìn)行適當(dāng)分割,并將分割得到的幾部分面積和用兩種方式表示出來,請(qǐng)你按照小白的想法在圖中用虛線畫出分割線,并驗(yàn)證平方差公式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某天我國一艘海監(jiān)船巡航到A港口正西方的B處時(shí),發(fā)現(xiàn)在B的北偏東60°方向,相距150海里處的C點(diǎn)有一可疑船只正沿CA方向行駛,C點(diǎn)在A港口的北偏東30°方向上,海監(jiān)船向A港口發(fā)出指令,執(zhí)法船立即從A港口沿AC方向駛出,在D處成功攔截可疑船只,此時(shí)D點(diǎn)與B點(diǎn)的距離為75海里.

(1)求B點(diǎn)到直線CA的距離;

(2)執(zhí)法船從A到D航行了多少海里?(≈1.414,≈1.732,結(jié)果精確到0.1海里)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,菱形ABCD,AB=4,∠ADC=120o,連接對(duì)角線AC、BD交于點(diǎn)O,

(1)如圖2,將△AOD沿DB平移,使點(diǎn)D與點(diǎn)O重合,求平移后的△ABO與菱形ABCD重合部分的面積.

(2)如圖3,將△ABO繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)交AB于點(diǎn)E,交BC于點(diǎn)F,

①求證:BE′+BF=2,

②求出四邊形OEBF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知,,是坐標(biāo)平面上三點(diǎn).

1)請(qǐng)畫出關(guān)于原點(diǎn)對(duì)稱的

2)請(qǐng)寫出點(diǎn)關(guān)于軸對(duì)稱的點(diǎn)的坐標(biāo),若將點(diǎn)向上平移個(gè)單位,使其落在內(nèi)部,指出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD內(nèi)接于⊙O,點(diǎn)P上一點(diǎn),連接PB、PC,若AD=2AB,則cosBPC的值為( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案