【題目】已知ADBCABCD,E在線(xiàn)段BC延長(zhǎng)線(xiàn)上,AE平分∠BAD.連接DE,若∠ADE3CDE,∠AED60°.

1)求證:∠ABC=∠ADC;

2)求∠CDE的度數(shù).

【答案】1)詳見(jiàn)解析;(215°.

【解析】

1)根據(jù)平行線(xiàn)的性質(zhì)即可得到答案;

2)根據(jù)∠ADE3CDE,設(shè)∠CDEx°,∠ADE3x°,∠ADC2x°,根據(jù)平行線(xiàn)的性質(zhì)得出方程90x+60+3x180,求出x即可.

解(1)∵ABCD,

∴∠ABC=∠DCE,

ADBC

∴∠ADC=∠DCE,

∴∠ABC=∠ADC,

2)設(shè)∠CDEx,則∠ADC2x

ABCD,

∴∠BAD180°﹣2x

AE平分∠BAD,

∴∠EADBAD90°﹣x,

ADBC

∴∠BEA=∠EAD90°﹣x,

∴∠BED+ADE180°,

90°﹣x+60°+3x180°,

x15°,

∴∠CDE15°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,⊙P的圓心是(2,a)(a>2),半徑為2,函數(shù)y=x的圖象被⊙P截得的弦AB的長(zhǎng)為 ,則a的值是( )

A.2
B.2+
C.2
D.2+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知線(xiàn)段MN=8,C是線(xiàn)段MN上一動(dòng)點(diǎn),在MN的同側(cè)分別作等邊△CMD和等邊△CNE.
(1)如圖①,連接DN與EM,兩條線(xiàn)段相交于點(diǎn)H,求證ME=DN,并求∠DHM的度數(shù);

(2)如圖②,過(guò)點(diǎn)D、E分別作線(xiàn)段MN的垂線(xiàn),垂足分別為F、G,問(wèn):在點(diǎn)C運(yùn)動(dòng)過(guò)程中,DF+EG的長(zhǎng)度是否為定值,如果是,請(qǐng)求出這個(gè)定值,如果不是請(qǐng)說(shuō)明理由;

(3)當(dāng)點(diǎn)C由點(diǎn)M移到點(diǎn)N時(shí),點(diǎn)H移到的路徑長(zhǎng)度為(直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,動(dòng)點(diǎn)M、N同時(shí)從原點(diǎn)出發(fā)沿?cái)?shù)軸做勻速運(yùn)動(dòng),己知?jiǎng)狱c(diǎn)M、N的運(yùn)動(dòng)速度比是1:2(速度單位:1個(gè)單位長(zhǎng)度/秒),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)若動(dòng)點(diǎn)M向數(shù)軸負(fù)方向運(yùn)動(dòng),動(dòng)點(diǎn)N向數(shù)軸正方向運(yùn)動(dòng),當(dāng)t=2秒時(shí),動(dòng)點(diǎn)M運(yùn)動(dòng)到A點(diǎn),動(dòng)點(diǎn)N運(yùn)動(dòng)到B點(diǎn),且AB=12(單位長(zhǎng)度).

①在直線(xiàn)l上畫(huà)出A、B兩點(diǎn)的位置,并回答:點(diǎn)A運(yùn)動(dòng)的速度是   (單位長(zhǎng)度/秒);點(diǎn)B運(yùn)動(dòng)的速度是   (單位長(zhǎng)度/秒).

②若點(diǎn)P為數(shù)軸上一點(diǎn),且PA﹣PB=OP,求的值;

(2)由(1)中A、B兩點(diǎn)的位置開(kāi)始,若M、N同時(shí)再次開(kāi)始按原速運(yùn)動(dòng),且在數(shù)軸上的運(yùn)動(dòng)方向不限,再經(jīng)過(guò)幾秒,MN=4(單位長(zhǎng)度)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果批發(fā)商場(chǎng)經(jīng)銷(xiāo)一種高檔水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下,若每千克漲價(jià)1元,日銷(xiāo)售量將減少20千克.
(1)現(xiàn)該商場(chǎng)要保證每天盈利6 000元,同時(shí)又要顧客得到實(shí)惠,那么每千克應(yīng)漲價(jià)多少元?
(2)若該商場(chǎng)單純從經(jīng)濟(jì)角度看,每千克這種水果漲價(jià)多少元,能使商場(chǎng)獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)的坐標(biāo)依次為A(﹣1,2),B(﹣41),C(﹣2,﹣2).

1)請(qǐng)?jiān)谶@個(gè)坐標(biāo)系中作出ABC關(guān)于y軸對(duì)稱(chēng)的A1B1C1

2)分別寫(xiě)出點(diǎn)A1B1、C1的坐標(biāo).

3)求A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為半圓O的直徑,C為BA延長(zhǎng)線(xiàn)上一點(diǎn),CD切半圓O于點(diǎn)D。連結(jié)OD,作BE⊥CD于點(diǎn)E,交半圓O于點(diǎn)F。已知CE=12,BE=9

(1)求證:△COD∽△CBE;
(2)求半圓O的半徑 的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,點(diǎn)PA點(diǎn)出發(fā)沿路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為B點(diǎn);點(diǎn)QB點(diǎn)出發(fā)沿路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為A點(diǎn)點(diǎn)PQ分別以1和3的運(yùn)動(dòng)速度同時(shí)開(kāi)始運(yùn)動(dòng),兩點(diǎn)都要到相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動(dòng),在某時(shí)刻,分別過(guò)PQE問(wèn):點(diǎn)P運(yùn)動(dòng)多少時(shí)間時(shí),QFC全等?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)開(kāi)展“綠化家鄉(xiāng)、植樹(shù)造林”活動(dòng),為了解全校植樹(shù)情況,對(duì)該校甲、乙、丙、丁四個(gè)班級(jí)植樹(shù)情況進(jìn)行了調(diào)查,將收集的數(shù)據(jù)整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,完成下列問(wèn)題:

(1)這四個(gè)班共植樹(shù)棵;
(2)請(qǐng)你在答題卡上補(bǔ)全兩幅統(tǒng)計(jì)圖;
(3)求圖1中“甲”班級(jí)所對(duì)應(yīng)的扇形圓心角的度數(shù);
(4)若四個(gè)班級(jí)植樹(shù)的平均成活率是95%,全校共植樹(shù)2000棵,請(qǐng)你估計(jì)全校種植的樹(shù)中成活的樹(shù)有多少棵?

查看答案和解析>>

同步練習(xí)冊(cè)答案