(2009•伊春)如圖,A、B、C為一個平行四邊形的三個頂點,且A、B、C三點的坐標(biāo)分別為(3,3)、(6,4)、(4,6).
(1)請直接寫出這個平行四邊形第四個頂點的坐標(biāo);
(2)求這個平行四邊形的面積.

【答案】分析:(1)本題應(yīng)從BC為對角線、AC為對角線、AB為對角線三種情況入手討論,即可得出第四個點的坐標(biāo).
(2)解本題時應(yīng)將三角形進(jìn)行分化,化為幾個直角三角形的和,解出面積和,乘以2即為平行四邊形的面積.
解答:解:(1)BC為對角線時,第四個點坐標(biāo)為(7,7);AB為對角線時,第四個點為(5,1);當(dāng)AC為對角線時,第四個點坐標(biāo)為(1,5).

(2)圖中△ABC面積=3×3-(1×3+1×3+2×2)=4,所以平行四邊形面積=2×△ABC面積=8.
點評:此題主要考查了平行四邊形的性質(zhì)和判定,難易程度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《四邊形》(07)(解析版) 題型:解答題

(2009•伊春)如圖,點A、B的坐標(biāo)分別為(4,0)、(0,8),點C是線段OB上一動點,點E在x軸正半軸上,四邊形OEDC是矩形,且OE=2OC.設(shè)OE=t(t>0),矩形OEDC與△AOB重合部分的面積為S.
根據(jù)上述條件,回答下列問題:
(1)當(dāng)矩形OEDC的頂點D在直線AB上時,求t的值;
(2)當(dāng)t=4時,求S的值;
(3)直接寫出S與t的函數(shù)關(guān)系式(不必寫出解題過程);
(4)若S=12,則t=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2009•伊春)如圖,拋物線y=x2+bx+c經(jīng)過A(-,0)、B(0,-3)兩點,此拋物線的對稱軸為直線l,頂點為C,且l與直線AB交于點D.
(1)求此拋物線的解析式;
(2)直接寫出此拋物線的對稱軸和頂點坐標(biāo);
(3)連接BC,求證:BC=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2009•伊春)如圖,點A、B的坐標(biāo)分別為(4,0)、(0,8),點C是線段OB上一動點,點E在x軸正半軸上,四邊形OEDC是矩形,且OE=2OC.設(shè)OE=t(t>0),矩形OEDC與△AOB重合部分的面積為S.
根據(jù)上述條件,回答下列問題:
(1)當(dāng)矩形OEDC的頂點D在直線AB上時,求t的值;
(2)當(dāng)t=4時,求S的值;
(3)直接寫出S與t的函數(shù)關(guān)系式(不必寫出解題過程);
(4)若S=12,則t=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省溫州市直十校聯(lián)盟中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•伊春)如圖,點A、B的坐標(biāo)分別為(4,0)、(0,8),點C是線段OB上一動點,點E在x軸正半軸上,四邊形OEDC是矩形,且OE=2OC.設(shè)OE=t(t>0),矩形OEDC與△AOB重合部分的面積為S.
根據(jù)上述條件,回答下列問題:
(1)當(dāng)矩形OEDC的頂點D在直線AB上時,求t的值;
(2)當(dāng)t=4時,求S的值;
(3)直接寫出S與t的函數(shù)關(guān)系式(不必寫出解題過程);
(4)若S=12,則t=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年黑龍江省佳木斯市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•伊春)如圖,點A、B的坐標(biāo)分別為(4,0)、(0,8),點C是線段OB上一動點,點E在x軸正半軸上,四邊形OEDC是矩形,且OE=2OC.設(shè)OE=t(t>0),矩形OEDC與△AOB重合部分的面積為S.
根據(jù)上述條件,回答下列問題:
(1)當(dāng)矩形OEDC的頂點D在直線AB上時,求t的值;
(2)當(dāng)t=4時,求S的值;
(3)直接寫出S與t的函數(shù)關(guān)系式(不必寫出解題過程);
(4)若S=12,則t=______.

查看答案和解析>>

同步練習(xí)冊答案