【題目】二次函數(shù)為常數(shù),中的與的部分對(duì)應(yīng)值如下表:
x | -1 | 0 | 3 |
y | n | -3 | -3 |
當(dāng)時(shí),下列結(jié)論中一定正確的是________(填序號(hào)即可)
①;②當(dāng)時(shí),的值隨值的增大而增大;③;④當(dāng)時(shí),關(guān)于的一元二次方程的解是,.
【答案】①②④
【解析】
①根據(jù)表格數(shù)據(jù)得到對(duì)稱軸為,c=-3﹤0,又n﹥0知a﹥0,即可得出答案;
②根據(jù)二次函數(shù)的性質(zhì)即可解答;
③根據(jù)二次函數(shù)的性質(zhì),結(jié)合圖象即可解答;
④利用待定系數(shù)法求出a、b、c,代入解一元二次方程即可解答.
由表格數(shù)據(jù)知,二次函數(shù)的對(duì)稱軸為,且c=-3﹤0,
∵n﹥0,∴a﹥0,
∵對(duì)稱軸﹥0,
∴b﹤0即 bc﹥0,故①正確;
∵a﹥0,對(duì)稱軸為,
∴當(dāng)x﹥時(shí),的值隨值的增大而增大,
∴當(dāng)時(shí),的值隨值的增大而增大,
故②正確;
③由對(duì)稱軸得:b=-3a,
∴
∵當(dāng)x=-1時(shí),y=n,
∴n=a+3a-3=4a-3,
∴n﹤4a,故③錯(cuò)誤;
④當(dāng)n=1時(shí),將(-1,1),(0,-3),(3,-3)代入函數(shù)解析式中,得:
,
解得,
∴關(guān)于x的一元二次方程為,解得,,
故④正確,
故答案是:①②④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y=.
(1)若該反比例函數(shù)的圖象與直線y=kx+4(k≠0)只有一個(gè)公共點(diǎn),求k的值;
(2)如圖,反比例函數(shù)y= (1≤x≤4)的圖象記為曲線C1,將C1向左平移2個(gè)單位長度,得曲線C2,請(qǐng)?jiān)趫D中畫出C2,并直接寫出C1平移到C2處所掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2010河南23題)在平面直角坐標(biāo)系中,已知拋物線經(jīng)過,,三點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值;
(3)若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線上的動(dòng)點(diǎn),判斷有幾個(gè)位置能使以點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)試銷一種成本為每件60元的T恤,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(jià)(元)之間的函數(shù)圖象如圖所示.
(1)求與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)若商場(chǎng)銷售這種T恤獲得利潤為(元),求出利潤(元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式;并求出當(dāng)銷售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤,最大利潤是多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)D(﹣2,﹣3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸上有一動(dòng)點(diǎn)P,求出PA+PD的最小值;
(3)若拋物線上有一動(dòng)點(diǎn)P,使三角形ABP的面積為6,求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是矩形
(1)如圖1,、分別是、上的點(diǎn),,垂足為,連接.
①求證:;
②若為的中點(diǎn),求證:;
(2)如圖2,將矩形沿折疊,點(diǎn)落在點(diǎn)處,點(diǎn)落在邊的點(diǎn)處,連接交于點(diǎn),是的中點(diǎn).若,,直接寫出的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果連鎖店銷售某種熱帶水果,其進(jìn)價(jià)為20元/千克.銷售一段時(shí)間后發(fā)現(xiàn):該水果的日銷量(千克)與售價(jià)(元/千克)的函數(shù)關(guān)系如圖所示:
(1)求關(guān)于的函數(shù)解析式;
(2)當(dāng)售價(jià)為多少元/千克時(shí),當(dāng)日銷售利潤最大,最大利潤為多少元?
(3)由于某種原因,該水果進(jìn)價(jià)提高了元/千克(),物價(jià)局規(guī)定該水果的售價(jià)不得超過40元/千克,該連鎖店在今后的銷售中,日銷售量與售價(jià)仍然滿足(1)中的函數(shù)關(guān)系.若日銷售最大利潤是元,請(qǐng)直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某車行經(jīng)銷的型自行車去年月份銷售總額為萬元,今年由于改造升級(jí)每輛車售價(jià)比去年增加元,今年月份與去年同期相比,銷售數(shù)量相同,銷售總額增加.
(1)求今年型車每輛售價(jià)多少元?
(2)該車行計(jì)劃月份用不超過萬元的資金新進(jìn)一批型車和型車共輛,應(yīng)如何進(jìn)貨才能使這批車售完后獲利最多?
今年、兩種型號(hào)車的進(jìn)價(jià)和售價(jià)如下表:
型車 | 型車 | |
進(jìn)價(jià)(元/輛) | ||
售價(jià)(元/輛) | 今年售價(jià) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游泳池每次換水前后水的體積基本保持不變,當(dāng)該游泳池以每小時(shí)300立方米的速度放水時(shí),經(jīng)3小時(shí)能將池內(nèi)的水放完.設(shè)放水的速度為x立方米/時(shí),將池內(nèi)的水放完需y小時(shí).已知該游泳池每小時(shí)的最大放水速度為350立方米
(1)求y關(guān)于x的函數(shù)表達(dá)式.
(2)若該游泳池將放水速度控制在每小時(shí)200立方米至250立方米(含200立方米和250立方米),求放水時(shí)間y的范圍.
(3)該游泳池能否在2.5小時(shí)內(nèi)將池內(nèi)的水放完?請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com