【題目】閱讀下面的情景對話,然后解答問題:
老師:我們新定義一種三角形,兩邊平方和等于第三邊平方的2倍的三角形叫做奇異三角形.
小華:等邊三角形一定是奇異三角形!
小明:那直角三角形是否存在奇異三角形呢?
(1)根據(jù)“奇異三角形”的定義,請你判斷小華提出的命題:“等邊三角形一定是奇異三角形”是真命題還是假命題?
(2)在Rt△ABC中,AB=c,AC=b,BC=a,且c>b>a,若Rt△ABC是奇異三角形,求a:b:c;
(3)如圖,AB是⊙O的直徑,C是⊙O上一點(不與點A、B重合),D是半圓 中點,C、D在直徑AB的兩側(cè),若在⊙O內(nèi)存在點E,使AE=AD,CB=CE.
①求證:△ACE是奇異三角形:
②當△ACE是直角三角形時,求∠AOC的度數(shù).
【答案】(1)真命題,理由見解析;(2);(3)①見解析;②∠AOC的度數(shù)為60°或120°
【解析】
(1)根據(jù)“奇異三角形”的定義與等邊三角形的性質(zhì),求證即可;
(2)根據(jù)勾股定理與奇異三角形的性質(zhì),可得a2+b2=c2與a2+c2=2b2,用a表示出b與c,即可求得答案;
(3)①AB是⊙O的直徑,即可求得∠ACB=∠ADB=90°,然后利用勾股定理與圓的性質(zhì)即可證得;
②利用(2)中的結(jié)論,分別從AC:AE:CE=1:;與AC:AE:CE=::1去分析,即可求得結(jié)果.
(1)設(shè)等邊三角形的一邊為a,則a2+a2=2a2,
∴符合奇異三角形”的定義.
∴是真命題;
(2)∵∠C=90°,
則a2+b2=c2①,
∵Rt△ABC是奇異三角形,且b>a,
∴a2+c2=2b2②,
由①②得:b=a,c=a,
∴a:b:c=1:;;
(3)∵①AB是⊙O的直徑,
∴∠ACB=∠ADB=90°,
在Rt△ACB中,AC2+BC2=AB2,
在Rt△ADB中,AD2+BD2=AB2,
∵點D是半圓弧ADB的中點,
∴弧AD=弧BD,
∴AD=BD,
∴AB2=AD2+BD2=2AD2,
∴AC2+CB2=2AD2,
又∵CB=CE,AE=AD,
∴AC2+CE2=2AE2,
∴△ACE是奇異三角形;
②由①可得△ACE是奇異三角形,
∴AC2+CE2=2AE2,
當△ACE是直角三角形時,
由(2)得:AC:AE:CE=1:或AC:AE:CE=::1,
當AC:AE:CE=1:時,AC:CE=1:,即AC:CB=1:,
∵∠ACB=90°,
∴∠ABC=30°,
∴∠AOC=2∠ABC=60°;
當AC:AE:CE=::1時,AC:CE=:1,即AC:CB=:1,
∵∠ACB=90°,
∴∠ABC=60°,
∴∠AOC=2∠ABC=120°.
∴∠AOC的度數(shù)為60°或120°.
科目:初中數(shù)學 來源: 題型:
【題目】為了開展陽光體育運動,堅持讓中小學生“每天鍛煉一小時”,體育局做了一個隨機調(diào)查,調(diào)查內(nèi)容是:每天鍛煉是否超過1h及鍛煉未超過1h的原因.他們隨機調(diào)查了340名學生,用所得的數(shù)據(jù)制成了扇形統(tǒng)計圖和頻數(shù)分布直方圖(圖1、圖2).
根據(jù)圖示,請回答以下問題:
(1)“沒時間”的人數(shù)是 ,并補全頻數(shù)分布直方圖;
(2)2015年全市中小學生約18萬人,按此調(diào)查,可以估計2015年全市中小學生每天鍛煉超過1h的約有 萬人;
(3)在(2)的條件下,如果計劃2017年全市中小學生每天鍛煉未超過1h的人數(shù)減少到8.64萬人,求2015年至2017年鍛煉未超過1h人數(shù)的年平均降低的百分率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以△ABC的三邊為邊分別作等邊△ACD、△ABE、△BCF。
(1)求證:△EBF≌△DFC;
(2)求證:四邊形AEFD是平行四邊形;
(3)①△ABC滿足_____________________時,四邊形AEFD是菱形。(無需證明)
②△ABC滿足_______________________時,四邊形AEFD是矩形。(無需證明)
③△ABC滿足_______________________時,四邊形AEFD是正方形。(無需證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知E,F分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結(jié)論的是( )
A. ①③④B. ②④⑤C. ①③⑤D. ①③④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,拋物線交x軸于A(-2,0),B(3,0)兩點,交y軸于點C(0,6).
(1)寫出a,b,c的值;
(2)連接BC,點P為第一象限拋物線上一點,過點A作AD⊥x軸,過點P作PD⊥BC于交直線AD于點D,設(shè)點P的橫坐標為t,AD長為h.
①求h與t的函數(shù)關(guān)系式和h的最大值(請求出自變量t的取值范圍);
②過第二象限點D作DE∥AB交BC于點E,若DP=CE,時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小亮一家在一湖泊中游玩,湖泊中有一孤島,媽媽在孤島P處觀看小亮與爸爸在湖中劃船(如圖所示).小船從P處出發(fā),沿北偏東60°方向劃行200米到A處,接著向正南方向劃行一段時間到B處.在B處小亮觀測到媽媽所在的P處在北偏西37°的方向上,這時小亮與媽媽相距多少米(精確到1米)?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+3交x軸于點A(﹣1,0)和點B(3,0).
(1)求該拋物線所對應(yīng)的函數(shù)解析式;
(2)如圖2,該拋物線與y軸交于點C,頂點為F,點D(2,3)在該拋物線上.
①求四邊形ACFD的面積;
②點P是線段AB上的動點(點P不與點A、B重合),過點P作PQ⊥x軸交該拋物線于點Q,連接AQ、DQ,當△AQD是直角三角形時,求出所有滿足條件的點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有七張正面分別標有數(shù)字﹣1、﹣2、0、1、2、3、4的卡片,除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中隨機抽取一張,記卡片上的數(shù)字為m,則使關(guān)于x的方程x2﹣2(m﹣1)x+m2﹣3m=0有實數(shù)根,且不等式組無解的概率是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,對稱軸為直線x=﹣1的拋物線y=ax2+bx+c(a≠0)與x軸相交于A,B兩點.
(1)若點A的坐標為(﹣4,0),求點B的坐標.
(2)若已知a=1,點A的坐標為(﹣3,0),C為拋物線與y軸的交點.
①若點P在拋物線上,且S△POC=4S△BOC,求點P的坐標;
②設(shè)點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com