【題目】如圖,對(duì)稱(chēng)軸為直線x=﹣1的拋物線y=ax2+bx+c(a≠0)與x軸相交于A,B兩點(diǎn).
(1)若點(diǎn)A的坐標(biāo)為(﹣4,0),求點(diǎn)B的坐標(biāo).
(2)若已知a=1,點(diǎn)A的坐標(biāo)為(﹣3,0),C為拋物線與y軸的交點(diǎn).
①若點(diǎn)P在拋物線上,且S△POC=4S△BOC,求點(diǎn)P的坐標(biāo);
②設(shè)點(diǎn)Q是線段AC上的動(dòng)點(diǎn),作QD⊥x軸交拋物線于點(diǎn)D,求線段QD長(zhǎng)度的最大值.
【答案】(1)B(2,0);(2)①P(4,21),(﹣4,5);②當(dāng)m=﹣時(shí),QD的最大值為.
【解析】
(1)根據(jù)拋物線與x軸的兩個(gè)交點(diǎn)關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng),可求B點(diǎn)坐標(biāo);
(2)①根據(jù)題意可求拋物線解析式,可求△BOC的面積,根據(jù)S△POC=4S△BOC,可求P點(diǎn)坐標(biāo);
③求出直線AC解析式,設(shè)點(diǎn)Q(m,-m-3)(-3≤m≤0),則點(diǎn)D(m,m2+2m-3),根據(jù)二次函數(shù)的最值求法,可求QD的最大值.
(1)∵對(duì)稱(chēng)軸是直線x=﹣1,點(diǎn)A的坐標(biāo)為(﹣4,0),且A,B關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng),
∴B(2,0);
(2)①∵對(duì)稱(chēng)軸是直線x=﹣1,點(diǎn)A的坐標(biāo)為(﹣3,0),且A,B關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng),
∴B(1,0),即OB=1,
∵a=1,
∴拋物線解析式y=(x﹣1)(x+3)=x2+2x﹣3;
當(dāng)x=0時(shí),y=﹣3,
∴點(diǎn)C(0,﹣3),即OC=3,
∴S△BOC=OB×OC=,
設(shè)P(x,x2+2x﹣3),
∴S△POC=×3×|x|,
∵S△POC=4S△BOC,
∴|x|=4×,
∴x=±4,
∴P(4,21),(﹣4,5);
②∵點(diǎn)A(﹣3,0),點(diǎn)C(0,﹣3),
∴直線AC解析式y=﹣x﹣3,
∴設(shè)點(diǎn)Q(m,﹣m﹣3)(﹣3≤m≤0),
則點(diǎn)D(m,m2+2m﹣3),
∴QD=﹣m﹣3﹣(m2+2m﹣3)=﹣(m+)2+,
∴當(dāng)m=﹣時(shí),QD的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的情景對(duì)話,然后解答問(wèn)題:
老師:我們新定義一種三角形,兩邊平方和等于第三邊平方的2倍的三角形叫做奇異三角形.
小華:等邊三角形一定是奇異三角形!
小明:那直角三角形是否存在奇異三角形呢?
(1)根據(jù)“奇異三角形”的定義,請(qǐng)你判斷小華提出的命題:“等邊三角形一定是奇異三角形”是真命題還是假命題?
(2)在Rt△ABC中,AB=c,AC=b,BC=a,且c>b>a,若Rt△ABC是奇異三角形,求a:b:c;
(3)如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn)(不與點(diǎn)A、B重合),D是半圓 中點(diǎn),C、D在直徑AB的兩側(cè),若在⊙O內(nèi)存在點(diǎn)E,使AE=AD,CB=CE.
①求證:△ACE是奇異三角形:
②當(dāng)△ACE是直角三角形時(shí),求∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】細(xì)心的小明發(fā)現(xiàn),一元二次方程ax2+bx+c=0(a≠0)根與系數(shù)之間的“秘密”關(guān)系.
(1)當(dāng)x=1時(shí)有a+b+c=0,當(dāng)x=﹣1時(shí)有a﹣b+c=0.若9a+c=3b,求x;
(2)若2a+b=0,3a+c=0,寫(xiě)出滿(mǎn)足條件的一個(gè)一元二次方程,并求另一個(gè)根;
(3)當(dāng)老師寫(xiě)出方程2x2﹣3x﹣1=0,要求不解方程判斷根的情況時(shí),小明立即回答,有兩個(gè)不相等的實(shí)數(shù)根.據(jù)此,你能根據(jù)一元二次方程系數(shù)a、b、c的符號(hào)以及相互之間的數(shù)量關(guān)系,寫(xiě)出一些關(guān)于一元二次方程ax2+bx+c=0(a≠0)根與系數(shù)之間的規(guī)律嗎?請(qǐng)寫(xiě)一寫(xiě)(至少兩條).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小巷左右兩側(cè)是豎直的墻,一架梯子AC斜靠在右墻,測(cè)得梯子頂端距離地面AB=2米,梯子與地面夾角α的正弦值sinα=0.8.梯子底端位置不動(dòng),將梯子斜靠在左墻時(shí),頂端距離地面2.4米,則小巷的寬度為( )
A. 0.7米B. 1.5米
C. 2.2米D. 2.4米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班準(zhǔn)備選一名學(xué)生參加數(shù)學(xué)史知識(shí)競(jìng)賽,現(xiàn)統(tǒng)計(jì)了兩名選手本學(xué)期的五次測(cè)試 成績(jī):甲:83,80,90,87, 85; 乙:78,92,82,89,84.
(1)請(qǐng)根據(jù)上面的數(shù)據(jù)完成下表:
極差 | 平均數(shù) | 方差 | |
甲 | 10 | ________ | ________ |
乙 | _________ | 85 | 24.8 |
(2)請(qǐng)你推選出一名參賽選手,并用所學(xué)的統(tǒng)計(jì)知識(shí)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:二次函數(shù)y=x2+bx+c 的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(-3,0),與 y 軸交于點(diǎn) C(0,-3)在拋物線上.
(1)求拋物線的表達(dá)式;
(2)拋物線的對(duì)稱(chēng)軸上有一動(dòng)點(diǎn) P,求出當(dāng) PB+PC 最小時(shí)點(diǎn) P的坐標(biāo);
(3)若拋物線上有一動(dòng)點(diǎn)Q,使△ABQ的面積為6,求Q點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在Rt△ABC中,BC=AC=2,點(diǎn)M是AC邊上一動(dòng)點(diǎn),連接BM,以CM為直徑的⊙O交BM于N,則線段AN的最小值為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D、E、F分別在邊AB、AC、BC上,DE∥BC,DF∥AC,若△ADE與四邊形DBCE的面積相等,則△DBF與△ADE的面積之比為( )
A. B. C. D. 3-2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品的進(jìn)價(jià)為每件50元.當(dāng)售價(jià)為每件70元時(shí),每星期可賣(mài)出300件,現(xiàn)需降價(jià)處理,且經(jīng)市場(chǎng)調(diào)查:每降價(jià)1元,每星期可多賣(mài)出20件.在確保盈利的前提下,解答下列問(wèn)題:
(1)若設(shè)每件降價(jià)x元、每星期售出商品的利潤(rùn)為y元,請(qǐng)寫(xiě)出y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍;
(2)當(dāng)降價(jià)多少元時(shí),每星期的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com