【題目】如圖,正五邊形ABCDE放入某平面直角坐標(biāo)系后,若頂點(diǎn)A,B,C,D的坐標(biāo)分別是(0,a),(﹣3,2),(b,m),(c,m),則點(diǎn)E的坐標(biāo)是( )
A.(2,﹣3)
B.(2,3)
C.(3,2)
D.(3,﹣2)
【答案】C
【解析】解:∵點(diǎn)A坐標(biāo)為(0,a),
∴點(diǎn)A在該平面直角坐標(biāo)系的y軸上,
∵點(diǎn)C、D的坐標(biāo)為(b,m),(c,m),
∴點(diǎn)C、D關(guān)于y軸對稱,
∵正五邊形ABCDE是軸對稱圖形,
∴該平面直角坐標(biāo)系經(jīng)過點(diǎn)A的y軸是正五邊形ABCDE的一條對稱軸,
∴點(diǎn)B、E也關(guān)于y軸對稱,
∵點(diǎn)B的坐標(biāo)為(﹣3,2),
∴點(diǎn)E的坐標(biāo)為(3,2).
故答案為:C.
由題意得出y軸的位置,由正五邊形ABCDE是軸對稱圖形,根據(jù)關(guān)于y軸對稱點(diǎn)的坐標(biāo)特點(diǎn),即可求出點(diǎn)E的坐標(biāo)。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,是等邊三角形邊上一動點(diǎn)(點(diǎn))與點(diǎn)不重合,連接,以為邊在上方作等邊三角形,連接,你能發(fā)現(xiàn)與之間的數(shù)量關(guān)系嗎?并證明你發(fā)現(xiàn)的結(jié)論.
(2)如圖二,當(dāng)動點(diǎn)在等邊三角形邊上運(yùn)動時(shí)(點(diǎn)與點(diǎn)不重合),連接,以為邊在其上方、下方分別作等邊三角形和等邊三角形,連接,,探究,與有何數(shù)量關(guān)系?并證明你探究的結(jié)論.
(3)如圖三,當(dāng)動點(diǎn)在等邊三角形邊的延長線上運(yùn)動時(shí),其他作法與圖2相同,若,請直接寫出 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+3與拋物線 交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為 .動點(diǎn)P在拋物線上運(yùn)動(不與點(diǎn)A、B重合),過點(diǎn)P作y軸的平行線,交直線AB于點(diǎn)Q.當(dāng)PQ不與y軸重合時(shí),以PQ為邊作正方形PQMN,使MN與y軸在PQ的同側(cè),連結(jié)PM.設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求b、c的值.
(2)當(dāng)點(diǎn)N落在直線AB上時(shí),直接寫出m的取值范圍.
(3)當(dāng)點(diǎn)P在A、B兩點(diǎn)之間的拋物線上運(yùn)動時(shí),設(shè)正方形PQMN的周長為C,求C與m之間的函數(shù)關(guān)系式,并寫出C隨m增大而增大時(shí)m的取值范圍.
(4)當(dāng)△PQM與坐標(biāo)軸有2個(gè)公共點(diǎn)時(shí),直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖①,在直角三角形ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,可知:∠BAD=∠C(不需要證明);
特例探究:如圖②,∠MAN=90°,射線AE在這個(gè)角的內(nèi)部,點(diǎn)B、C在∠MAN的邊AM、AN上,且AB=AC, CF⊥AE于點(diǎn)F,BD⊥AE于點(diǎn)D.證明:△ABD≌△CAF;
歸納證明:如圖③,點(diǎn)BC在∠MAN的邊AM、AN上,點(diǎn)EF在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC, ∠1=∠2=∠BAC.求證:△ABE≌△CAF;
拓展應(yīng)用:如圖④,在△ABC中,AB=AC,AB>BC.點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,則△ACF與△BDE的面積之和為 .(12分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BF平分∠ABC,AF⊥BF于點(diǎn)F,D為AB的中點(diǎn),連接DF延長交AC于點(diǎn)E.若AB=10,BC=16,則線段EF的長為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長均為1個(gè)單位的正方形網(wǎng)格圖中,建立了平面直角坐標(biāo)系xOy,按要求解答下列問題:
(1)寫出△ABC三個(gè)頂點(diǎn)的坐標(biāo);
(2)畫出△ABC向右平移6個(gè)單位后得到的圖形△A1B1C1;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AM∥BN,∠A=80°,點(diǎn)P是射線AM上動點(diǎn)(與A不重合),BC、BD分別平分∠ABP和∠PBN,交射線AM于C、D.
(1)求∠CBD的度數(shù);
(2)當(dāng)點(diǎn)P運(yùn)動時(shí),那么∠APB:∠ADB的度數(shù)比值是否隨之發(fā)生變化?若不變,請求出這個(gè)比值;若變化,請找出變化規(guī)律;
(3)當(dāng)點(diǎn)P運(yùn)動到使∠ACB=∠ABD時(shí),求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車沿同一平直公路由地勻速行駛(中途不停留),前往終點(diǎn)地,甲、乙兩車之間的距離(千米)與甲車行駛的時(shí)間(小時(shí))之間的函數(shù)關(guān)系如圖所示。下列說法:①甲、乙兩地相距210千米;②甲速度為60千米/小時(shí);③乙速度為120千米/小時(shí);④乙車共行駛小時(shí),其中正確的個(gè)數(shù)為( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com