【題目】如圖,在ABCD中,DB=DC,∠C的度數(shù)比∠ABD的度數(shù)大54°,AE⊥BD于點E,則∠DAE的度數(shù)等于

【答案】12°
【解析】解:設(shè)∠C=x,則∠ABD=x﹣54°, ∵DB=CD,
∴∠C=∠DBC=x°,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,AD∥BC,
∴∠ABC+∠C=180°,
∴x+x+x﹣54°=180°,
∴x=78,
即∠C=∠DBC=78°,
∵AD∥BC,
∴∠ADB=∠DBC=78°,
∵AE⊥BD,
∴∠AED=90°,
∴∠DAE=180°﹣90°﹣78°=12°,
所以答案是:12°.
【考點精析】解答此題的關(guān)鍵在于理解平行四邊形的性質(zhì)的相關(guān)知識,掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,B=90°,AB=8 cmAD=24 cm,BC=26 cm.點PA出發(fā),以1 cm/s的速度向點D運動,點Q從點C同時出發(fā),以3 cm/s的速度向點B運動,規(guī)定其中一個動點到達端點時,另一個動點也隨之停止運動.從運動開始,使PQCD需要__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明:如圖,點D,E,F分別是三角形ABC的邊BCCA,AB上的點,連接DE,DF,DEAB,∠BFD=∠CED,連接BEDF于點G,求證:∠EGF+∠AEG180°.

證明:∵DEAB(已知),

∴∠A=∠CED   

又∵∠BFD=∠CED(已知),

∴∠A=∠BFD   

DFAE   

∴∠EGF+∠AEG180°(   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了倡導(dǎo)“節(jié)約用水,從我做起”,南沙區(qū)政府決定對區(qū)直屬機關(guān)300戶家庭的用水情況作一次調(diào)查,區(qū)政府調(diào)查小組隨機抽查了其中50戶家庭一年的月平均用水量(單位:噸),調(diào)查中發(fā)現(xiàn)每戶用水量均在10﹣14噸/月范圍,并將調(diào)查結(jié)果制成了如圖所示的條形統(tǒng)計圖.

(1)請將條形統(tǒng)計圖補充完整;

(2)這50戶家庭月用水量的平均數(shù)是 ,眾數(shù)是 ,中位數(shù)是 ;

(3)根據(jù)樣本數(shù)據(jù),估計南沙區(qū)直屬機關(guān)300戶家庭中月平均用水量不超過12噸的約有多少戶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,線段ABBC于點B,CDBC于點C,點E在線段BC上,且AEDE.

(1)求證:∠EAB=CED;

(2)如圖2,AF、DF分別平分∠BAE和∠CDE,EH平分∠DECCD于點H,EH的反向延長線交AF于點G.

①求證EGAF;

②求∠F的度數(shù).(提示:三角形內(nèi)角和等于180度)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一個含45°角的直角三角板BEF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點B重合,聯(lián)結(jié)DF,M,N分別為DF,EF的中點,聯(lián)結(jié)MA,MN.

(1)如圖1,點E,F分別在正方形的邊CBAB上,請判斷MA,MN的數(shù)量關(guān)系和位置關(guān)系,直接

寫出結(jié)論;

(2)如圖2,E,F分別在正方形的邊CB,AB的延長線上,其他條件不變,那么你在(1)中得到的兩個結(jié)論還成立嗎?若立,請加以證明;若不成立,請說明理由.

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA為⊙O的切線,A為切點,過A作OP的垂線AB,垂足為點C,交⊙O于點B,延長BO與⊙O交于點D,與PA的延長線交于點E.
(1)求證:PB為⊙O的切線;
(2)若tan∠ABE= ,求sin∠E.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠A=∠B=90°,E是AB上一點,且AE=BC,∠1=∠2.

(1)證明:AB=AD+BC;

(2)判斷△CDE的形狀?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一塊長方體木塊的各棱長如圖所示,一只蜘蛛在木塊的一個頂點A處,一只蒼蠅在這個長方體上和蜘蛛相對的頂點B處,蜘蛛急于捉住蒼蠅,沿著長方體的表面向上爬.

(1)如果D是棱的中點,蜘蛛沿“AD→DB”路線爬行,它從A點爬到B點所走的路程為多少?

(2)你認(rèn)為“AD→DB”是最短路線嗎?如果你認(rèn)為不是,請計算出最短的路程.

查看答案和解析>>

同步練習(xí)冊答案