【題目】如圖,已知E是平行四邊形ABCD中BC邊的中點,連接AE并延長AE交DC的延長線于點F.
(1)求證:△ABE≌△FCE;
(2)連接AC、BF,若AE= BC,求證:四邊形ABFC為矩形;
(3)在(2)條件下,直接寫出當△ABC再滿足時,四邊形ABFC為正方形.
【答案】
(1)
證明:∵四邊形ABCD為平行四邊形,
∴AB∥DC,
∴∠ABE=∠ECF,
又∵E為BC的中點,
∴BE=CE,
在△ABE和△FCE中,
∵ ,
∴△ABE≌△FCE(ASA)
(2)
證明:∵△ABE≌△FCE,
∴BE=EC,AE=EF,
∴四邊形ABFC為平行四邊形,
又∵AE= BC,
∴AF=BC,
∴四邊形ABFC為矩形
(3)AB=AC
【解析】證明: (3)當△ABC為等腰三角形時,即AB=AC時,四邊形ABFC為正方形;
理由如下:
∵AB=AC,E為BC的中點,
∴AE⊥BC,
∵四邊形ABFC為平行四邊形,
∴四邊形ABFC是菱形,
又∵四邊形ABFC是矩形,
∴四邊形ABFC為正方形.
所以答案是:AB=AC.
【考點精析】解答此題的關鍵在于理解全等三角形的性質(zhì)的相關知識,掌握全等三角形的對應邊相等; 全等三角形的對應角相等.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF.連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.
(1)請判斷:FG與CE的數(shù)量關系是 , 位置關系是;
(2)如圖2,若點E,F(xiàn)分別是邊CB,BA延長線上的點,其它條件不變,(1)中結論是否仍然成立?請作出判斷并給予證明;
(3)如圖3,若點E,F(xiàn)分別是邊BC,AB延長線上的點,其它條件不變,(1)中結論是否仍然成立?請直接寫出你的判斷.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E,F(xiàn)是平行四邊形ABCD的對角線AC上的點,CE=AF.請你猜想:BE與DF有怎樣的位置關系和數(shù)量關系?并對你的猜想加以證明:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AC=a,BD=b,且AC⊥BD,順次連接四邊形ABCD各邊中點,得到四邊形A1B1C1D1 , 再順次連接四邊形A1B1C1D1各邊中點,得到四邊形A2B2C2D2 , …,如此進行下去,得到四邊形AnBnCnDn . 下列結論正確的有( )
①四邊形A2B2C2D2是矩形;
②四邊形A4B4C4D4是菱形;
③四邊形A5B5C5D5的周長是 ,
④四邊形AnBnCnDn的面積是 .
A.①②③
B.②③④
C.①②
D.②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,點A的坐標是(0,3),點B在x軸上,將△AOB繞點A逆時針旋轉90°得到△ACD,點O、B對應點分別是C、D.
(1)若點B的坐標是(﹣4,0),請在圖中畫出△ACD,并寫出點C、D的坐標;
(2)當點D落在第一象限時,試寫出一個符合條件的點B的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國古代《易經(jīng)》一書中記載,遠古時期,人們通過在繩子上打結來記錄數(shù)量,即“結繩計數(shù)”.如圖,一位母親在從右到左依次排列的繩子上打結,滿七進一,用來記錄孩子自出生后的天數(shù),由圖可知,孩子自出生后的天數(shù)是( )
A.84
B.336
C.510
D.1326
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知線段AD=10 cm,點B、C都是線段AD上的點,且AC=7 cm,BD=4 cm,若E、F分別是AB、CD的中點,求線段EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)y= .
(1)若該反比例函數(shù)的圖象與直線y=kx+4(k≠0)只有一個公共點,求k的值;
(2)如圖,反比例函數(shù)y= (1≤x≤4)的圖象記為曲線C1 , 將C1向左平移2個單位長度,得曲線C2 , 請在圖中畫出C2 , 并直接寫出C1平移至C2處所掃過的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com