【題目】如圖,已知E是平行四邊形ABCD中BC邊的中點,連接AE并延長AE交DC的延長線于點F.

(1)求證:△ABE≌△FCE;
(2)連接AC、BF,若AE= BC,求證:四邊形ABFC為矩形;
(3)在(2)條件下,直接寫出當△ABC再滿足時,四邊形ABFC為正方形.

【答案】
(1)

證明:∵四邊形ABCD為平行四邊形,

∴AB∥DC,

∴∠ABE=∠ECF,

又∵E為BC的中點,

∴BE=CE,

在△ABE和△FCE中,

,

∴△ABE≌△FCE(ASA)


(2)

證明:∵△ABE≌△FCE,

∴BE=EC,AE=EF,

∴四邊形ABFC為平行四邊形,

又∵AE= BC,

∴AF=BC,

∴四邊形ABFC為矩形


(3)AB=AC
【解析】證明: (3)當△ABC為等腰三角形時,即AB=AC時,四邊形ABFC為正方形;
理由如下:
∵AB=AC,E為BC的中點,
∴AE⊥BC,
∵四邊形ABFC為平行四邊形,
∴四邊形ABFC是菱形,
又∵四邊形ABFC是矩形,
∴四邊形ABFC為正方形.
所以答案是:AB=AC.

【考點精析】解答此題的關鍵在于理解全等三角形的性質(zhì)的相關知識,掌握全等三角形的對應邊相等; 全等三角形的對應角相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF.連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.

(1)請判斷:FG與CE的數(shù)量關系是 , 位置關系是;
(2)如圖2,若點E,F(xiàn)分別是邊CB,BA延長線上的點,其它條件不變,(1)中結論是否仍然成立?請作出判斷并給予證明;
(3)如圖3,若點E,F(xiàn)分別是邊BC,AB延長線上的點,其它條件不變,(1)中結論是否仍然成立?請直接寫出你的判斷.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一坐標系中,函數(shù)y=ax2+bx與y= 的圖象大致是圖中的(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E,F(xiàn)是平行四邊形ABCD的對角線AC上的點,CE=AF.請你猜想:BE與DF有怎樣的位置關系和數(shù)量關系?并對你的猜想加以證明:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AC=a,BD=b,且AC⊥BD,順次連接四邊形ABCD各邊中點,得到四邊形A1B1C1D1 , 再順次連接四邊形A1B1C1D1各邊中點,得到四邊形A2B2C2D2 , …,如此進行下去,得到四邊形AnBnCnDn . 下列結論正確的有(
①四邊形A2B2C2D2是矩形;
②四邊形A4B4C4D4是菱形;
③四邊形A5B5C5D5的周長是 ,
④四邊形AnBnCnDn的面積是

A.①②③
B.②③④
C.①②
D.②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,點A的坐標是(0,3),點B在x軸上,將△AOB繞點A逆時針旋轉90°得到△ACD,點O、B對應點分別是C、D.

(1)若點B的坐標是(﹣4,0),請在圖中畫出△ACD,并寫出點C、D的坐標;
(2)當點D落在第一象限時,試寫出一個符合條件的點B的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國古代《易經(jīng)》一書中記載,遠古時期,人們通過在繩子上打結來記錄數(shù)量,即“結繩計數(shù)”.如圖,一位母親在從右到左依次排列的繩子上打結,滿七進一,用來記錄孩子自出生后的天數(shù),由圖可知,孩子自出生后的天數(shù)是( )

A.84
B.336
C.510
D.1326

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知線段AD=10 cm,B、C都是線段AD上的點,AC=7 cm,BD=4 cm,E、F分別是AB、CD的中點,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)y=
(1)若該反比例函數(shù)的圖象與直線y=kx+4(k≠0)只有一個公共點,求k的值;
(2)如圖,反比例函數(shù)y= (1≤x≤4)的圖象記為曲線C1 , 將C1向左平移2個單位長度,得曲線C2 , 請在圖中畫出C2 , 并直接寫出C1平移至C2處所掃過的面積.

查看答案和解析>>

同步練習冊答案