【題目】如圖,A(﹣1,0)、B(2,﹣3)兩點(diǎn)在一次函數(shù)y1=﹣x+m與二次函數(shù)y2ax2+bx﹣3的圖象上.

(1)求m的值和二次函數(shù)的解析式;

(2)請(qǐng)直接寫(xiě)出使y1y2時(shí)自變量x的取值范圍.

【答案】(1)m=﹣1,y2x2﹣2x﹣3;(2)當(dāng)x≤﹣1x≥2時(shí),y1y2

【解析】

(1)因?yàn)辄c(diǎn)A(﹣1,0)、B(2,﹣3)都在一次函數(shù)和二次函數(shù)圖象上,一次函數(shù)只有一個(gè)待定系數(shù)m所以將A(﹣1,0)、B(2,﹣3)中任意一點(diǎn)的坐標(biāo)代入y2=﹣x+m即可;二次函數(shù)y1ax2+bx﹣3有兩個(gè)待定系數(shù)a、b,所以需要A(﹣1,0)、B(2,﹣3)兩點(diǎn)的坐標(biāo)都代入y1ax2+bx﹣3,用二元一次方程組解出a、b的值

(2)直接觀察圖象中同一個(gè)橫坐標(biāo)對(duì)應(yīng)的y1、y2的值,直接得到答案

1)把A(﹣1,0)代入y2=﹣x+m:0=﹣(﹣1)+m,∴m=﹣1.

A(﹣1,0)、B(2,﹣3)兩點(diǎn)代入y1ax2+bx﹣3解得,∴y2x2﹣2x﹣3;

(2)∵y1x2﹣2x﹣3=(x+1)(x﹣3),拋物線開(kāi)口向上

A(﹣1,0),B(2,﹣3),∴當(dāng)x≤﹣1x≥2時(shí)y1y2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在△ABC中,DBC邊上的一點(diǎn),EAD的中點(diǎn),過(guò)點(diǎn)ABC的平行線交與BE的延長(zhǎng)線于點(diǎn)F,且AF=DC,連結(jié)CF

1)求證:四邊形ADCF是平行四邊形;

2)當(dāng)ABAC有何數(shù)量關(guān)系時(shí),四邊形ADCF為矩形,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某批乒乓球的質(zhì)量檢驗(yàn)結(jié)果如下:

抽取的乒乓球數(shù)n

200

500

1000

1500

2000

優(yōu)等品頻數(shù)m

188

471

946

1426

1898

優(yōu)等品頻率

0.940

0.942

0.946

0.951

0.949

(1)畫(huà)出這批乒乓球優(yōu)等品頻率的折線統(tǒng)計(jì)圖;

(2)這批乒乓球優(yōu)等品的概率的估計(jì)值是多少?

(3)從這批乒乓球中選擇5個(gè)黃球、13個(gè)黑球、22個(gè)紅球,它們除顏色外都相同,將它們放入一個(gè)不透明的袋中.

求從袋中摸出一個(gè)球是黃球的概率;

現(xiàn)從袋中取出若干個(gè)黑球,并放入相同數(shù)量的黃球,攪拌均勻后使從袋中摸出一個(gè)是黃球的概率不小于, 問(wèn)至少取出了多少個(gè)黑球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】材料一:把一個(gè)自然數(shù)的個(gè)位數(shù)字截去,再用余下的數(shù)減去個(gè)位數(shù)的2倍,如果差是7的倍數(shù),則原數(shù)能被7整除.如果差太大不易看出是否7的倍數(shù),可重復(fù)上述「截尾、倍大、相減、驗(yàn)差」的過(guò)程,直到能清楚判斷為止.例如,判斷392是否7的倍數(shù)的過(guò)程如下:,,所以,3927的倍數(shù);又例如判斷8638是否7的倍數(shù)的過(guò)程如下:,,,所以,86387的倍數(shù).

材料二:若一個(gè)四位自然數(shù)n滿足千位與個(gè)位相同,百位與十位相同,我們稱(chēng)這個(gè)數(shù)為對(duì)稱(chēng)數(shù).將對(duì)稱(chēng)數(shù)n的前兩位與后兩位交換位置得到一個(gè)新的對(duì)稱(chēng)數(shù),記,例如

(1)請(qǐng)用材料一的方法判斷6909367能不能被7整除;

(2)m、p對(duì)稱(chēng)數(shù)”,其中,,a,b,c均為整數(shù)),若m能被7整除,且,求p

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,過(guò)點(diǎn)O作弦AD的垂線交半圓O于點(diǎn)E,交AC于點(diǎn)C,使BED=C.

(1)判斷直線AC與圓O的位置關(guān)系,并證明你的結(jié)論;

(2)若AC=8,cosBED=,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+4與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,若已知A點(diǎn)的坐標(biāo)為A(﹣2,0).

(1)求拋物線的解析式及它的對(duì)稱(chēng)軸;

(2)求點(diǎn)C的坐標(biāo),連接AC、BC并求線段BC所在直線的解析式;

(3)在拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)Q,使ACQ為等腰三角形?若存在,求出符合條件的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mxx軸的負(fù)半軸于點(diǎn)A.點(diǎn)By軸正半軸上一點(diǎn),點(diǎn)A關(guān)于點(diǎn)B的對(duì)稱(chēng)點(diǎn)A′恰好落在拋物線上.過(guò)點(diǎn)A′x軸的平行線交拋物線于另一點(diǎn)C.若點(diǎn)A′的橫坐標(biāo)為1,則A′C的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+cyx的部分對(duì)應(yīng)值如下表:

x

-1

0

1

3

y

-3

1

3

1

下列結(jié)論:①拋物線的開(kāi)口向下;②其圖象的對(duì)稱(chēng)軸為x=1;③當(dāng)x<1時(shí),函數(shù)值yx的增大而增大;④方程ax2+bx+c=0有一個(gè)根大于4,其中正確的結(jié)論有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:對(duì)于給定的一個(gè)二次函數(shù),其圖象沿x軸翻折后,得到的圖象所對(duì)應(yīng)的二次函數(shù)稱(chēng)為原二次函數(shù)的橫翻函數(shù).

(1)直接寫(xiě)出二次函數(shù)y=2x2的橫翻函數(shù)的表達(dá)式.

(2)已知二次函數(shù)yx2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(﹣3,1)、B(2,6).

①求bc的值.

②求二次函數(shù)yx2+bx+c的橫翻函數(shù)的頂點(diǎn)坐標(biāo).

③若將二次函數(shù)yx2+bx+c的圖象位于AB兩點(diǎn)間的部分(含A、B兩點(diǎn))記為G,則當(dāng)二次函數(shù)y=﹣x2bxc+mG有且只有一個(gè)交點(diǎn)時(shí),直接寫(xiě)出m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案