【題目】彈簧掛上物體后會(huì)伸長(zhǎng),若一彈簧長(zhǎng)度(cm)與所掛物體質(zhì)量(kg)之間的關(guān)系如下表:

物體的質(zhì)量(kg)

0

1

2

3

4

5

彈簧的長(zhǎng)度(cm)

12

125

13

135

14

145

則下列說(shuō)法錯(cuò)誤的是(

A.彈簧長(zhǎng)度隨物體的質(zhì)量的變化而變化,物體的質(zhì)量是自變量,彈簧的長(zhǎng)度是因變量

B.如果物體的質(zhì)量為x kg,那么彈簧的長(zhǎng)度y cm可以表示為y=12+0.5x

C.在彈簧能承受的范圍內(nèi),當(dāng)物體的質(zhì)量為7kg時(shí),彈簧的長(zhǎng)度為16cm

D.在沒(méi)掛物體時(shí),彈簧的長(zhǎng)度為12cm

【答案】C

【解析】

根據(jù)表格中所給的數(shù)據(jù)判斷即可.

解:A選項(xiàng),表中的數(shù)據(jù)涉及到了彈簧的長(zhǎng)度及物體的質(zhì)量,且彈簧長(zhǎng)度隨物體的質(zhì)量的變化而變化,物體的質(zhì)量是自變量,彈簧的長(zhǎng)度是因變量,故A正確;

B選項(xiàng)由表中的數(shù)據(jù)可知,彈簧的初始長(zhǎng)度為12cm,物體的質(zhì)量每增加1kg,彈簧的長(zhǎng)度伸長(zhǎng)0.5cm,所以物體的質(zhì)量為x kg時(shí),彈簧的長(zhǎng)度y cm可以表示為y=12+0.5x,B正確;

C選項(xiàng)由B中的關(guān)系式可知當(dāng)物體的質(zhì)量為7kg時(shí),彈簧的長(zhǎng)度y為cm,C錯(cuò)誤;

D選項(xiàng)沒(méi)掛物體時(shí),即物體的質(zhì)量為0,此時(shí)彈簧的長(zhǎng)度為12cm,故D正確.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC在平面直角坐標(biāo)系中的位置如圖所示,將△ABC向右平移5個(gè)單位長(zhǎng)度,再向下平移3個(gè)單位長(zhǎng)度得到△A1B1C1.(圖中每個(gè)小方格邊長(zhǎng)均為1個(gè)單位長(zhǎng)度)

1)在圖中畫(huà)出平移后的△A1B1C1;

2)直接寫(xiě)出△A1B1C1各頂點(diǎn)的坐標(biāo).

A1______,B1______,C1______

3)在x軸上找到一點(diǎn)M,當(dāng)AM+A1M取最小值時(shí),M點(diǎn)的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P為等邊三角形ABC內(nèi)的一點(diǎn),且P到三個(gè)頂點(diǎn)AB,C的距離分別為3,4,5,則ABC的面積為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=6,AC=10,ADBC邊上的中線,且AD=4,延長(zhǎng)AD到點(diǎn)E,使DE=AD,連接CE

(1)求證:△AEC是直角三角形.

(2)BC邊的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y=-2x+5

1)畫(huà)出它的圖像

2)求當(dāng)x=2時(shí),y的值

3)求當(dāng)y=-3時(shí),x的值

4)觀察圖像,直接寫(xiě)出當(dāng)x為何值時(shí),y0,y=0,y0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】仔細(xì)想一想,完成下面的說(shuō)理過(guò)程.

如圖,已知ABCD,∠B=D

求證:∠E=DFE

證明:∵ABCD (已知 )

∴∠B+ =180°( )

又∵∠B=D(已知

∴∠D +BCD=180°( )

( )

∴∠E=DFE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀短文,解決問(wèn)題

如果一個(gè)三角形和一個(gè)菱形滿足條件:三角形的一個(gè)角與菱形的一個(gè)角重合,且菱形的這個(gè)角的對(duì)角頂點(diǎn)在三角形的這個(gè)角的對(duì)邊上,則稱這個(gè)菱形為該三角形的“親密菱形”.如圖1,菱形AEFD為△ABC的“親密菱形”.

如圖2,△ABC中,以點(diǎn)A為圓心,以任意長(zhǎng)為半徑作弧,交AB、AC于點(diǎn)M、N,再分別以M、N為圓心,以大于MN的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)P,作射線AP,BC于點(diǎn)F,過(guò)點(diǎn)FFD//AC,F(xiàn)E//AB.

(1)求證:四邊形AEFD是△ABC的“親密菱形”;

(2)當(dāng)AB=6,AC=12,∠BAC=45°時(shí),求菱形AEFD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F.若AC=3,AB=5,則CE的長(zhǎng)為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AD⊥BC于D,若BD=AD,F(xiàn)D=CD.

(1)求證:∠FBD=∠CAD;

(2)求證:BE⊥AC.

查看答案和解析>>

同步練習(xí)冊(cè)答案