【題目】已知:A(0,1),B(2,0),C(4,3)

(1)在直角坐標(biāo)系中描出各點,畫出△ABC

(2)求△ABC的面積;

(3)設(shè)點P在坐標(biāo)軸上,且△ABP與△ABC的面積相等,求點P的坐標(biāo).

【答案】(1)畫圖見解析;(24;(3P10,0)或P-6,0);(0,5),(0,-3

【解析】試題分析:(1)根據(jù)坐標(biāo)標(biāo)出點,然后連接即可;

2)用梯形的面積減去兩個三角形的面積即可;

3)根據(jù)同底等高再坐標(biāo)軸上找點即可.

試題解析:(1)如圖

2=4,

3)由Px軸上,可由OA=1,可知PB=8,因此可知P點為(-6,0),(10,0);如果在y軸上,則由OB=2,可知AP=4,因此可知P為(0,5),(0,-3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長都為1,ABC在網(wǎng)格中的位置如圖所示,△ABC的三個頂點都在格點上.將點A、B、C的橫坐標(biāo)不變,縱坐標(biāo)都乘以-1,分別得到點A1、B1、C1

(1)寫出△A1B1C1,三個頂點的坐標(biāo)________;

(2)在圖中畫出△A1B1C1,則△ABC與△A1B1C1關(guān)于________對稱;

(3)若以點A、C、P為頂點的三角形與△ABC全等,直接寫出所有符合條件的點P的坐標(biāo)________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=18,BC=12,正方形DEFG的頂點E,F(xiàn)在△ABC內(nèi),頂點D,G分別在AB,AC上,AD=AG,DG=6,則點F到BC的距離為(
A.1
B.2
C.12 ﹣6
D.6 ﹣6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小格的頂點就做格點,以格點為頂點分別按下列要求畫三角形;

(1)使三角形的三邊長分別為2,3,

(在圖中畫出一個既可);

(2)請在數(shù)軸上作出的對應(yīng)點

(2)如圖①,A,B,C是三個格點(即小正方形的頂點),判斷ABBC的位置關(guān)系,并說明理由;

(3)如圖②,連接三格和兩格的對角線,求∠α+β的度數(shù)(要求:畫出示意圖,并說明理由).

  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,過點E作EF∥AB,交BC于點F.
(1)求證:四邊形DBFE是平行四邊形;
(2)當(dāng)△ABC滿足什么條件時,四邊形DBFE是菱形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在精準(zhǔn)扶貧中,某村的李師傅在縣政府的扶持下,去年下半年,他對家里的3個溫室大棚進(jìn)行修整改造,然后,1個大棚種植香瓜,另外2個大棚種植甜瓜,今年上半年喜獲豐收,現(xiàn)在他家的甜瓜和香瓜已全部售完,他高興地說:我的日子終于好了”. 最近,李師傅在扶貧工作者的指導(dǎo)下,計劃在農(nóng)業(yè)合作社承包5個大棚,以后就用8個大棚繼續(xù)種植香瓜和甜瓜,他根據(jù)種植經(jīng)驗及今年上半年的市場情況,打算下半年種植時,兩個品種同時種,一個大棚只種一個品種的瓜,并預(yù)測明年兩種瓜的產(chǎn)量、銷售價格及成本如下:

品種

產(chǎn)量(/每棚)

銷售量(/每斤)

成本(/每棚)

香瓜

2000

12

8000

甜瓜

4500

3

5000

現(xiàn)假設(shè)李師傅今年下半年香瓜種植的大棚數(shù)為x個,明年上半年8個大棚中所產(chǎn)的瓜全部售完后,獲得的利潤為y.

根據(jù)以上提供的信息,請你解答下列問題:

(1)求出yx之間的函數(shù)關(guān)系式;

(2)求出李師傅種植的8個大棚中,香瓜至少種植幾個大棚? 才能使獲得的利潤不低于10萬元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,BAD=BCD=90°,連接AC.若AC=6,則四邊形ABCD的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2+bx+c,其圖象拋物線交x軸于點A(1,0),B(3,0),交y軸于點C,直線l過點C,且交拋物線于另一點E(點E不與點A、B重合).
(1)求此二次函數(shù)關(guān)系式;
(2)若直線l1經(jīng)過拋物線頂點D,交x軸于點F,且l1∥l,則以點C、D、E、F為頂點的四邊形能否為平行四邊形?若能,求出點E的坐標(biāo);若不能,請說明理由.
(3)若過點A作AG⊥x軸,交直線l于點G,連接OG、BE,試證明OG∥BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉辦運動會,在1500米的項目中,參賽選手在200米的環(huán)形跑道上進(jìn)行,如圖記錄了跑得最快的一位選手與最慢的一位選手的跑步全過程(兩人都跑完了全程),其中x代表的是最快的選手全程的跑步時間,y代表的是這兩位選手之間的距離,下列說不合理的是(  )

A. 出發(fā)后最快的選手與最慢的選手相遇了兩次

B. 出發(fā)后最快的選手與最慢的選手第一次相遇比第二次相遇的用時短

C. 最快的選手到達(dá)終點時,最慢的選手還有415米未跑

D. 跑的最慢的選手用時4′46″

查看答案和解析>>

同步練習(xí)冊答案