【題目】《道德經(jīng)》中的道生一,一生二,二生三,三生萬物道出了自然數(shù)的特征,在數(shù)的學(xué)習(xí)過程中,我們會對其中一些具有某種特性的數(shù)進行研究,如學(xué)習(xí)自然數(shù)時,我們研究了奇數(shù)、偶數(shù)、質(zhì)數(shù),合數(shù)等,現(xiàn)在我們來研究另一種特珠的自然數(shù)純數(shù)”.

定義:對于自然數(shù),在計算時,各數(shù)位都不產(chǎn)生進位,則稱這個自然數(shù)純數(shù),例如:32純數(shù),因為計算時,各數(shù)位都不產(chǎn)生進位;23不是純數(shù),因為計算時,個位產(chǎn)生了進位.

1)判斷20192020是否是純數(shù)?請說明理由;

2)求出不大于100純數(shù)的個數(shù).

【答案】12019不是純數(shù),2020是純數(shù),理由見解析;(213

【解析】

1)根據(jù)題目中的新定義可以解答本題,注意各數(shù)位都不產(chǎn)生進位的自然數(shù)才是“純數(shù)”;

2)根據(jù)題意可以推出不大于100的“純數(shù)”的個數(shù),本題得以解決.

解:(12019不是純數(shù),2020純數(shù),

理由:當(dāng)n=2019時,n+1=2020,n+2=2021,

∵個位是9+0+1=10,需要進位,

2019不是純數(shù);

當(dāng)n=2020時,n+1=2021,n+2=2022,

∵個位是0+1+2=3,不需要進位,十位是2+2+2=6,不需要進位,百位為0+0+0=0,不需要進位,千位為2+2+2=6,不需要進位,

2020純數(shù)

2)由題意可得,

連續(xù)的三個自然數(shù)個位數(shù)字是0,12,其他位的數(shù)字為0,1,23時,不會

產(chǎn)生進位,

當(dāng)這個數(shù)是一位自然數(shù)時,只能是0,1,2,共三個,

當(dāng)這個自然數(shù)是兩位自然數(shù)時,十位數(shù)字是1,23,個位數(shù)是01,2,共九個,

當(dāng)這個數(shù)是三位自然數(shù)時,只能是100,

由上可得,不大于100純數(shù)的個數(shù)為3+9+1=13,

即不大于100純數(shù)的有13個.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以∠AOB的頂點O為端點引射線OP,使∠AOP:∠BOP=3:2,若∠AOB=17°,∠AOP的度數(shù)為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算

15+(﹣6+3﹣(﹣9+(﹣4)﹣7

2)(﹣22(﹣2)﹣4×|5|

3)﹣22÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的推理過程.

如圖,ABCD,BE、CF分別是∠ABC和∠BCD的平分線.求證:∠E=F

證明:∵ABCD(已知)

∴∠ABC=BCD

BECF分別是∠ABC和∠BCD的平分線(已知)

∴∠CBE=ABC,∠BCF=BCD

∴∠CBE=BCF

BECF

∴∠E=F( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)y=ax2﹣2ax﹣3aa0的圖象與x軸交于AB兩點A在點B的右側(cè)),y軸的正半軸交于點C,頂點為D

1求頂點D的坐標(biāo)用含a的代數(shù)式表示).

2若以AD為直徑的圓經(jīng)過點C

①求a的值

②如圖2,Ey軸負半軸上一點,連接BE,將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°得到△PMNP、MN分別和點O、B、E對應(yīng)),并且點M、N都在拋物線上,MFx軸于點F,若線段BF=2MF,求點MN的坐標(biāo)

③如圖3,Q在拋物線的對稱軸上Q為圓心的圓過A、B兩點,并且和直線CD相切,求點Q的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E是正方形ABCD外一點,且DE=CE=,連接AE.

(1)將△ADE繞點D逆時針旋轉(zhuǎn)90°,作出旋轉(zhuǎn)后的圖形.

(2)如果∠AED=15°,判斷△DEC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】怡然美食店的A、B兩種菜品,每份成本均為14元,售價分別為20元、18元,這兩種菜品每天的營業(yè)額共為1120元,總利潤為280元.

1)該店每天賣出這兩種菜品共多少份?

2)該店為了增加利潤,準(zhǔn)備降低A種菜品的售價,同時提高B種菜品的售價,售賣時發(fā)現(xiàn),A種菜品售價每降0.5元可多賣1份;B種菜品售價每提高0.5元就少賣1份,如果這兩種菜品每天銷售總份數(shù)不變,那么這兩種菜品一天的總利潤最多是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,有一個長方形被分割成了6個大小不同的正方形,其中最小正方形的邊長是3,則該長方形長是___________;將同一個長方形作如圖2分割,分割成左上角的長方形G、右下角的長方形H以及7張長寬相同的小長方形M(小長方形M如圖3所示),當(dāng)長方形G與長方形H的周長相等時,小長方形M的寬是________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)yk0)圖象交于A、B兩點,與y軸交于點C,與x軸交于點D,其中A點坐標(biāo)為(﹣2,3).

1)求一次函數(shù)和反比例函數(shù)解析式.

2)若將點C沿y軸向下平移4個單位長度至點F,連接AF、BF,求△ABF的面積.

3)根據(jù)圖象,直接寫出不等式﹣x+b的解集.

查看答案和解析>>

同步練習(xí)冊答案