【題目】如圖,在四邊形中,,,延長至,連接交于,和的角平分線相交于點(diǎn).若,,則的度數(shù)是( )
A. 80°B. 75°C. 70°D. 60°
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小俊在A處利用高為1.5米的測角儀AB測得樓EF頂部E的仰角為30°,然后前進(jìn)12米到達(dá)C處,又測得樓頂E的仰角為60°,求樓EF的高度.(結(jié)果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示, P 是直線 l 外一點(diǎn),點(diǎn) A、B、C 在 l 上,且 PB l ,下列說法:① PA、PB、PC 這 3 條線段中, PB 最短;②點(diǎn) P 到直線 l 的距離是線段 PB 的長;③線段 AB 的長是點(diǎn) A 到 PB 的距離;④線段 PA 的長是點(diǎn) P 到直線 l 的距離. 其中正確的是( )
A. ①②③B. ①②④C. ①③④D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)指出函數(shù)圖象的開口方向是 ,對稱軸是 ,頂點(diǎn)坐標(biāo)為 ;
(2)當(dāng)x 時,y隨x的增大而減;
(3)怎樣移動拋物線就可以得到拋物線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,第一象限內(nèi)長方形ABCD,AB∥y軸,點(diǎn)A(1,1),點(diǎn)C(a,b),滿足 +|b﹣3|=0.
(1)求長方形ABCD的面積.
(2)如圖2,長方形ABCD以每秒1個單位長度的速度向右平移,同時點(diǎn)E從原點(diǎn)O出發(fā)沿x軸以每秒2個單位長度的速度向右運(yùn)動,設(shè)運(yùn)動時間為t秒.
①當(dāng)t=4時,直接寫出三角形OAC的面積為 ;
②若AC∥ED,求t的值;
(3)在平面直角坐標(biāo)系中,對于點(diǎn)P(x,y),我們把點(diǎn)P′(﹣y+1,x+1)叫做點(diǎn)P的伴隨點(diǎn),已知點(diǎn)A1的伴隨點(diǎn)為A2,點(diǎn)A2的伴隨點(diǎn)為A3,點(diǎn)A3的伴隨點(diǎn)為A4,…,這樣依次得到點(diǎn)A1,A2,A3,…,An.
①若點(diǎn)A1的坐標(biāo)為(3,1),則點(diǎn)A3的坐標(biāo)為 ,點(diǎn)A2014的坐標(biāo)為 ;
②若點(diǎn)A1的坐標(biāo)為(a,b),對于任意的正整數(shù)n,點(diǎn)An均在x軸上方,則a,b應(yīng)滿足的條件為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個頂點(diǎn)坐標(biāo)為A(-4,3)、B(-6,0)、C(-1,0).
(1) 請畫出△ABC關(guān)于坐標(biāo)原點(diǎn)O的中心對稱圖形△A′B′C′,并寫出點(diǎn)A的對應(yīng)點(diǎn)A′的坐標(biāo) ;
(2)若將點(diǎn)B繞坐標(biāo)原點(diǎn)O順時針旋轉(zhuǎn)90°,請直接寫出點(diǎn)B的對應(yīng)點(diǎn)B″的坐標(biāo) ;
(3)請直接寫出:以A、B、C為頂點(diǎn)的平行四邊形的第四個頂點(diǎn)D的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知正方形ABCD,點(diǎn)A(2,0),B(0,4),那么點(diǎn)C的坐標(biāo)是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下說法合理的是:( )
A. “打開電視,正在播放新聞節(jié)日”是必然事件
B. “拋一枚硬幣,正面朝上的概率為”表示每拋兩次就有一次正面朝上
C. “拋擲一枚均勻的骰子,出現(xiàn)點(diǎn)數(shù)6的概率是”表示隨著拋擲次數(shù)的增加“出現(xiàn)點(diǎn)數(shù)6”這一事件發(fā)生的頻率穩(wěn)定在附近
D. 為了解某品牌火腿的質(zhì)量,選擇全面檢測
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC被平行光線照射,CD⊥AB于D,AB在投影面上.
(1)指出圖中AC的投影是什么?CD與BC的投影呢?
(2)探究:當(dāng)△ABC為直角三角形(∠ACB=90°)時,易得AC2=AD·AB,此時有如下結(jié)論:直角三角形一直角邊的平方等于它在斜邊射影與斜邊的乘積,這一結(jié)論我們稱為射影定理.通過上述結(jié)論的推理,請證明以下兩個結(jié)論.
①BC2=BD·AB;②CD2=AD·BD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com