【題目】如圖,在平面直角坐標(biāo)系中,AB坐標(biāo)分別為A0,a)、Bb,a),且a,b滿足:(a-32+=0,現(xiàn)同時(shí)將點(diǎn)A、B分別向下平移3個(gè)單位,再向左平移1個(gè)單位,分別得到點(diǎn)A、B的對(duì)應(yīng)點(diǎn)CD,連接ACBD、AB

1)求點(diǎn)CD的坐標(biāo)及四邊形ABDC的面積S四邊形ABDC

2)在y軸上是否存在點(diǎn)M,連接MC、MD,使SMCD=四邊形ABDC?若存在這樣的點(diǎn),求出點(diǎn)M的坐標(biāo);若不存在,試說明理由.

3)點(diǎn)P是線段BD上的一個(gè)動(dòng)點(diǎn),連接PA、PO,當(dāng)點(diǎn)PBD上移動(dòng)時(shí)(不與BD重合),的值是否發(fā)生變化,并說明理由.

【答案】1S四邊形ABDC=15;(2)存在點(diǎn)M0,6)或(0-6),使SMCD=S四邊形ABDC ,見解析;(3)不變,見解析.

【解析】

1)由偶次方及算術(shù)平方根的非負(fù)性可求出a、b的值,進(jìn)而即可得出點(diǎn)A、B的坐標(biāo),再根據(jù)平移的性質(zhì)可得出點(diǎn)CD的坐標(biāo)以及四邊形ABDC為平行四邊形,套用平行四邊形的面積公式即可求出四邊形ABDC的面積;

2)設(shè)存在點(diǎn)M0,y),根據(jù)三角形的面積結(jié)合SMCD=S四邊形ABDC,即可得出關(guān)于y的含絕對(duì)值符號(hào)的一元一次方程,解之即可得出結(jié)論;

3)過P點(diǎn)作PEABOCE點(diǎn),根據(jù)平行線的性質(zhì)得∠BAP+DOP=APE+OPE=APO,故比值為1

解:(1)∵(a-32+=0

a=3,b=5,

∴點(diǎn)A03),B53).

將點(diǎn)A,B分別向下平移3個(gè)單位,再向左平移1個(gè)單位,得到點(diǎn)CD,

∴點(diǎn)C-10),D4,0).

AB平移得出CD可知,ABCD,且AB=CD=5

∴四邊形ABDC為平行四邊形,

S四邊形ABDC=5×3=15

2)設(shè)存在點(diǎn)M0y),

根據(jù)題意得:SMCD=×5|y|=S四邊形ABDC=15

×5|y|=15,解得:y6

∴存在點(diǎn)M0,6)或(0-6),使SMCD=S四邊形ABDC

3)當(dāng)點(diǎn)PBD上移動(dòng)時(shí),=1不變,理由如下:

過點(diǎn)PPEABOAE

CDAB平移得到,則CDAB

PECD,

∴∠BAP=APE,∠DOP=OPE,

∴∠BAP+DOP=APE+OPE=APO

=1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,王同學(xué)使一長(zhǎng)為4cm,寬為3cm的長(zhǎng)方形木板,在桌面上做無滑動(dòng)的翻滾(順時(shí)針方向)木板上點(diǎn)A位置變化為,其中第二次翻滾被桌面上一小木塊擋住,使木板與桌面成30°角,則點(diǎn)A翻滾到A2位置時(shí)共走過的路徑長(zhǎng)為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,兩點(diǎn)在數(shù)軸上,點(diǎn)表示的數(shù)為-10,點(diǎn)到點(diǎn)的距離是點(diǎn)到點(diǎn)距離的3倍,點(diǎn)以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)向右運(yùn)動(dòng).點(diǎn)以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)向右運(yùn)動(dòng)(點(diǎn)同時(shí)出發(fā))

1)數(shù)軸上點(diǎn)對(duì)應(yīng)的數(shù)是______.

2)經(jīng)過幾秒,點(diǎn)、點(diǎn)分別到原點(diǎn)的距離相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知正方形ABCO,A0,3),點(diǎn)Dx軸上一動(dòng)點(diǎn),以AD為邊在AD的右側(cè)作等腰RtADE,∠ADE90°,連接OE,則OE的最小值為(

A. B. C. 2D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線AB:y=﹣x+b分別與x,y軸交于A(6,0)、B 兩點(diǎn),過點(diǎn)B的直線交x軸負(fù)半軸于C,且OB:OC=3:1.

(1)求點(diǎn)B的坐標(biāo).

(2)求直線BC的解析式.

(3)直線 EF 的解析式為y=x,直線EFAB于點(diǎn)E,交BC于點(diǎn) F,求證:SEBO=SFBO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠BAC=90°,ADBC,垂足為D.

(1)求作∠ABC的平分線(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)若∠ABC的平分線分別交AD,ACP,Q兩點(diǎn),證明:AP=AQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】村有肥料200噸,村有肥料300噸,現(xiàn)要將這些肥料全部運(yùn)往、兩倉(cāng)庫(kù).從村往兩倉(cāng)庫(kù)運(yùn)肥料的費(fèi)用分別為每噸20元和25元;從村往兩倉(cāng)庫(kù)運(yùn)肥料的費(fèi)用分別為每噸15元和18元;現(xiàn)倉(cāng)庫(kù)需要肥料240噸,現(xiàn)倉(cāng)庫(kù)需要肥料260噸.

(1)設(shè)村運(yùn)往倉(cāng)庫(kù)噸肥料,村運(yùn)肥料需要的費(fèi)用為元;村運(yùn)肥料需要的費(fèi)用為元.

①寫出的函數(shù)關(guān)系式,并求出的取值范圍;

②試討論、兩村中,哪個(gè)村的運(yùn)費(fèi)較少?

(2)考慮到村的經(jīng)濟(jì)承受能力,村的運(yùn)輸費(fèi)用不得超過4830元,設(shè)兩村的總運(yùn)費(fèi)為元,怎樣調(diào)運(yùn)可使總運(yùn)費(fèi)最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某新店開業(yè)宣傳,進(jìn)店有禮活動(dòng),店員們需準(zhǔn)備制作圓柱體禮品紙盒(如圖①),每個(gè)紙盒由1個(gè)長(zhǎng)方形側(cè)面和2個(gè)圓形底面組成,現(xiàn)有100張正方形紙板全部以A或者B方法截剪制作(如圖②),設(shè)截剪時(shí)x張用A方法.

1)根據(jù)題意,完成以下表格:

裁剪法A

裁剪法B

長(zhǎng)方形側(cè)面

x

   

圓形底面

   

0

2)若裁剪出的長(zhǎng)方形側(cè)面和圓形底面恰好用完,問能做多少個(gè)紙盒?

3)按以上制作方法,若店員們希望準(zhǔn)備300個(gè)禮盒,那至少還需要正方形紙板   張.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將兩塊直角三角尺的直角頂點(diǎn)O疊放在一起。

1)若∠AOD=25°,則∠AOC= 65° ,∠BOD= ,∠BOC= ;

2)比較∠AOC與∠BOD的大小關(guān)系,并說明理由;

3)猜想∠AOD與∠BOC的數(shù)量關(guān)系,并說明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案