【題目】在棋盤中建立如圖的直角坐標系,三顆棋子A,O,B的位置如圖,它們分別是(﹣1,1),(0,0)和(1,0).
(1)如圖2,添加棋子C,使A,O,B,C四顆棋子成為一個軸對稱圖形,請在圖中畫出該圖形的對稱軸;
(2)在其他格點位置添加一顆棋子P,使A,O,B,P四顆棋子成為一個軸對稱圖形,請直接寫出棋子P的位置的坐標.(寫出2個即可)

【答案】
(1)解:如圖2所示,C點的位置為(﹣1,2),A,O,B,C四顆棋子組成等腰梯形,直線l為該圖形的對稱軸


(2)解:如圖1所示:P(0,﹣1),P′(﹣1,﹣1)都符合題意


【解析】(1)根據(jù)A,B,O,C的位置,結合軸對稱圖形的性質(zhì)進而畫出對稱軸即可;(2)利用軸對稱圖形的性質(zhì)得出P點位置.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各題
(1)計算:|﹣4|﹣ +(﹣2)0;
(2)化簡:a(b+1)﹣ab﹣1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點P是拋物線:y=x2上的動點(點在第一象限內(nèi)).連接 OP,過點0作OP的垂線交拋物線于另一點Q.連接PQ,交y軸于點M.作PA丄x軸于點A,QB丄x軸于點B.設點P的橫坐標為m.

(1)如圖1,當m= 時,
①求線段OP的長和tan∠POM的值;
②在y軸上找一點C,使△OCQ是以OQ為腰的等腰三角形,求點C的坐標;
(2)如圖2,連接AM、BM,分別與OP、OQ相交于點D、E.
①用含m的代數(shù)式表示點Q的坐標;
②求證:四邊形ODME是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如圖1,等腰△ABC中,點E,F(xiàn)分別在腰AB,AC上,連結EF,若AE=CF,則稱EF為該等腰三角形的逆等線.

(1)如圖1,EF是等腰△ABC的逆等線,若EF⊥AB,AB=AC=5,AE =2,求逆等線EF的長;

(2)如圖2,若等腰直角△DEF的直角頂點D恰好為等腰直角△ABC底邊BC上的中點,且點E,F(xiàn)分別在AB,AC上,求證:EF為等腰△ABC的逆等線;

(3)如圖3,邊長為6的等邊三角形△AOC的邊OCX軸重合,EF是該等邊三角形的逆等線.F點的坐標為(5,);試求點E的坐標(若需要,本題可以直接應用結論:在直角三角形中,30°角所對的直角邊等于斜邊的一半.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線BE、CF相交于點P.

(1)若∠ABC=70°,∠ACB=50°,則∠BPC=   °;

(2)求證:∠BPC=180°﹣(∠ABC+∠ACB);

(3)若∠A=α,求∠BPC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖2是裝有三個小輪的手拉車在“爬”樓梯時的側面示意圖,定長的輪架桿OA,OB,OC抽象為線段,有OA=OB=OC,且∠AOB=120°,折線NG﹣GH﹣HE﹣EF表示樓梯,GH,EF是水平線,NG,HE是鉛垂線,半徑相等的小輪子⊙A,⊙B與樓梯兩邊都相切,且AO∥GH.
(1)如圖2①,若點H在線段OB時,則 的值是
(2)如果一級樓梯的高度HE=(8 +2)cm,點H到線段OB的距離d滿足條件d≤3cm,那么小輪子半徑r的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AB∥DC,線段AG,BG分別交CD于點E,F(xiàn),DE=CF. 求證:△GAB是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學習成為商城人的時尚,義烏市新圖書館的啟用,吸引了大批讀者.有關部門統(tǒng)計了2011年10月至2012年3月期間到市圖書館的讀者的職業(yè)分布情況,統(tǒng)計圖如下:
(1)在統(tǒng)計的這段時間內(nèi),共有萬人到市圖書館閱讀,其中商人所占百分比是 ,
(2)將條形統(tǒng)計圖補充完整(溫馨提示:作圖時別忘了用0.5毫米及以上的黑色簽字筆涂黑);
(3)若今年4月到市圖書館的讀者共28000名,估計其中約有多少名職工?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將等腰直角三角形ABC繞點A逆時針旋轉(zhuǎn)15°后得到△AB′C′,若AC=1,則圖中陰影部分的面積為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案