【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P是拋物線(xiàn):y=x2上的動(dòng)點(diǎn)(點(diǎn)在第一象限內(nèi)).連接 OP,過(guò)點(diǎn)0作OP的垂線(xiàn)交拋物線(xiàn)于另一點(diǎn)Q.連接PQ,交y軸于點(diǎn)M.作PA丄x軸于點(diǎn)A,QB丄x軸于點(diǎn)B.設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)如圖1,當(dāng)m= 時(shí),
①求線(xiàn)段OP的長(zhǎng)和tan∠POM的值;
②在y軸上找一點(diǎn)C,使△OCQ是以O(shè)Q為腰的等腰三角形,求點(diǎn)C的坐標(biāo);
(2)如圖2,連接AM、BM,分別與OP、OQ相交于點(diǎn)D、E.
①用含m的代數(shù)式表示點(diǎn)Q的坐標(biāo);
②求證:四邊形ODME是矩形.
【答案】
(1)
解:①∵把x= 代入 y=x2,得 y=2,
∴P( ,2),
∴OP=
∵PA丄x軸,
∴PA∥MO.
∴tan∠P0M=tan∠0PA= = .
②設(shè) Q(n,n2),
∵tan∠QOB=tan∠POM,
∴ .
∴n=-
∴Q(- , ),
∴OQ= .
當(dāng)OQ=OC時(shí),則C1(0, ),C2(0,- );
當(dāng)OQ=CQ時(shí),則C3(0,1);
當(dāng)CQ=CO時(shí),OQ為底,不合題意.
綜上所述,當(dāng)△OCQ是以O(shè)Q為腰的等腰三角形時(shí),所求點(diǎn)C坐標(biāo)為:C1(0, ),C2(0,- ),C3(0,1)
(2)
解:方法一:
①設(shè) Q(n,n2),
∵△APO∽△BOQ,
∴
∴ ,得n=- ,
∴Q(- , ).
②設(shè)直線(xiàn)PQ的解析式為:y=kx+b,把P(m,m2)、Q(- , )代入,得:
,
①﹣②得:m2﹣ =(m+ )k,
解得:k=m﹣ ③,
把③代入①,得:b=1,
∴M(0,1)
∵ ,∠QBO=∠MOA=90°,
∴△QBO∽△MOA
∴∠MAO=∠QOB,
∴QO∥MA
同理可證:EM∥OD
又∵∠EOD=90°,
∴四邊形ODME是矩形.
方法二:
①OP⊥OQ,∴KOP×KOQ=﹣1,
∵KOP= = ,KOQ=﹣ ,
∴l(xiāng)OQ:y=﹣ x,y=x2
∴x1=0(舍),x2=﹣ ,
∴Q(﹣ , ),
設(shè)點(diǎn)C(0,t),O(0,0),
∵△OCQ是以O(shè)Q為腰的等腰三角形.
∴OQ=OC或QO=QC,
∴(0+ )2+(0﹣ )2=(0﹣0)2+(0﹣t)2,∴t=± ,
∴(0+ )2+(0﹣ )2=(﹣ ﹣0)2+( ﹣t)2,∴t=1,
∴C1(0, ),C2(0,﹣ ),C3(0,1),
∵Px=m,∴PY=m2,∴KOP=m,
又OQ⊥OP,∴KOP×KOQ=﹣1,∴KOQ=﹣ ,
∴l(xiāng)OQ:y=﹣ x,
∵y=x2,
∴Q(﹣ , ),P(m,m2),
∴l(xiāng)PQ:y=(m﹣ )x+1,
即M(0,1),又A(m,0),B(﹣ ,0),O(0,0),
∴KAM= =﹣ ,∵KOQ=﹣ ,KAM=KOQ,∴AM∥OQ,
∴KBM= =m,∵KOP=m,∴KBM=KOP,∴BM∥OP,
∴四邊形ODME是平行四邊形,又OP⊥OQ,
∴四邊形ODME為矩形.
【解析】方法一:(1)①已知m的值,代入拋物線(xiàn)的解析式中可求出點(diǎn)P的坐標(biāo);由此確定PA、OA的長(zhǎng),通過(guò)解直角三角形易得出結(jié)論.②題干要求△OCQ是以O(shè)Q為腰的等腰三角形,所以分QO=OC、QC=QO、CQ=CO三種情況來(lái)判斷:QO=QC時(shí),Q在線(xiàn)段OC的垂直平分線(xiàn)上,Q、O的縱坐標(biāo)已知,C點(diǎn)坐標(biāo)即可確定;QO=OC時(shí),先求出OQ的長(zhǎng),那么C點(diǎn)坐標(biāo)可確定;
CQ=CO時(shí),OQ為底,不合題意.(2)①由∠QOP=90°,易求得△QBO∽△MOA,通過(guò)相關(guān)的比例線(xiàn)段來(lái)表示出點(diǎn)Q的坐標(biāo);②在四邊形ODME中,已知了一個(gè)直角,只需判定該四邊形是平行四邊形即可,那么可通過(guò)證明兩組對(duì)邊平行來(lái)得證.方法二:(1)略.(2)利用黃金法則二求出直線(xiàn)OQ的斜率與拋物線(xiàn)聯(lián)立求出Q點(diǎn)坐標(biāo),再利用黃金法則四求出C點(diǎn)坐標(biāo)3分別求出點(diǎn)M,A,O,B坐標(biāo),利用斜率相等,證明MA‖OQ,BM‖OP,從而得出四邊形ODME是平行四邊形,再利用OP⊥OQ證明矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是反比例函數(shù)y= (k<0)圖象上的點(diǎn),PA垂直x軸于點(diǎn)A(﹣1,0),點(diǎn)C的坐標(biāo)為(1,0),PC交y軸于點(diǎn)B,連結(jié)AB,已知AB= .
(1)k的值是;
(2)若M(a,b)是該反比例函數(shù)圖象上的點(diǎn),且滿(mǎn)足∠MBA<∠ABC,則a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+1(k≠0)與反比例函數(shù)y= (m≠0)的圖象有公共點(diǎn)A(1,2).直線(xiàn)l⊥x軸于點(diǎn)N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點(diǎn)B,C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省是勞務(wù)輸出大省,農(nóng)民外出務(wù)工增長(zhǎng)家庭收入的同時(shí),也一定程度影響了子女的管理和教育,缺少管理和教育的留守兒童的學(xué)習(xí)和心理健康狀況等問(wèn)題日趨顯現(xiàn),成為社會(huì)關(guān)注的焦點(diǎn).該省相關(guān)部門(mén)就留守兒童學(xué)習(xí)和心理健康狀況等問(wèn)題進(jìn)行調(diào)查,本次抽樣調(diào)查了該省某縣部分留守兒童,將調(diào)查出現(xiàn)的情況分四類(lèi),即A類(lèi):基本情況正常;B類(lèi);有輕度問(wèn)題;C類(lèi):有較為嚴(yán)重問(wèn)題;D類(lèi):有特別嚴(yán)重問(wèn)題.通過(guò)調(diào)查,得到下面兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解決下面的問(wèn)題.
(1)在這次隨機(jī)抽樣調(diào)查中,共抽查了多少名學(xué)生留守兒童?
(2)扇形統(tǒng)計(jì)圖中C類(lèi)所占的圓心角是°;這次調(diào)查中為D類(lèi)的留守兒童有人;
(3)請(qǐng)你估計(jì)該縣20000名留守兒童中,出現(xiàn)較為嚴(yán)重問(wèn)題及以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,將坐標(biāo)為(0,0),(2,1),(2,4),(0,3)的點(diǎn)依次連結(jié)起來(lái)形成一個(gè)圖案.
(1)這四個(gè)點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變成原來(lái)的,將所有的四個(gè)點(diǎn)用線(xiàn)段依次連結(jié)起來(lái),所得的圖案與原圖案相比有什么變化?
(2)縱、橫坐標(biāo)分別變成原來(lái)的2倍呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在四邊形ABCD中,∠DAB被對(duì)角線(xiàn)AC平分,且AC2=ABAD.我們稱(chēng)該四邊形為“可分四邊形”,∠DAB稱(chēng)為“可分角”.
(1)如圖2,在四邊形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求證:四邊形ABCD為“可分四邊形”;
(2)如圖3,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,如果∠DCB=∠DAB,則求∠DAB的度數(shù);
(3)現(xiàn)有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4,則△DAB的最大面積等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:長(zhǎng)方形ABCD中,AD=10,AB=4,點(diǎn)Q是BC的中點(diǎn),點(diǎn)P在AD邊上運(yùn)動(dòng),當(dāng)△BPQ是等腰三角形時(shí),AP的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在棋盤(pán)中建立如圖的直角坐標(biāo)系,三顆棋子A,O,B的位置如圖,它們分別是(﹣1,1),(0,0)和(1,0).
(1)如圖2,添加棋子C,使A,O,B,C四顆棋子成為一個(gè)軸對(duì)稱(chēng)圖形,請(qǐng)?jiān)趫D中畫(huà)出該圖形的對(duì)稱(chēng)軸;
(2)在其他格點(diǎn)位置添加一顆棋子P,使A,O,B,P四顆棋子成為一個(gè)軸對(duì)稱(chēng)圖形,請(qǐng)直接寫(xiě)出棋子P的位置的坐標(biāo).(寫(xiě)出2個(gè)即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知直線(xiàn)y=kx與拋物線(xiàn)y= 交于點(diǎn)A(3,6).
(1)求直線(xiàn)y=kx的解析式和線(xiàn)段OA的長(zhǎng)度;
(2)點(diǎn)P為拋物線(xiàn)第一象限內(nèi)的動(dòng)點(diǎn),過(guò)點(diǎn)P作直線(xiàn)PM,交x軸于點(diǎn)M(點(diǎn)M、O不重合),交直線(xiàn)OA于點(diǎn)Q,再過(guò)點(diǎn)Q作直線(xiàn)PM的垂線(xiàn),交y軸于點(diǎn)N.試探究:線(xiàn)段QM與線(xiàn)段QN的長(zhǎng)度之比是否為定值?如果是,求出這個(gè)定值;如果不是,說(shuō)明理由;
(3)如圖2,若點(diǎn)B為拋物線(xiàn)上對(duì)稱(chēng)軸右側(cè)的點(diǎn),點(diǎn)E在線(xiàn)段OA上(與點(diǎn)O、A不重合),點(diǎn)D(m,0)是x軸正半軸上的動(dòng)點(diǎn),且滿(mǎn)足∠BAE=∠BED=∠AOD.繼續(xù)探究:m在什么范圍時(shí),符合條件的E點(diǎn)的個(gè)數(shù)分別是1個(gè)、2個(gè)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com