畫(huà)圖,將圖中的△ABC作下列運(yùn)動(dòng),畫(huà)出相應(yīng)的圖形.
(1)沿y軸正向平移2個(gè)單位;
(2)關(guān)于y軸對(duì)稱;
(3)以B點(diǎn)為位似中心,放大到2倍.

【答案】分析:(1)把三角形的每個(gè)頂點(diǎn)向上移動(dòng)兩個(gè)單位長(zhǎng)度,然后連接得到的三個(gè)點(diǎn)即可;
(2)作出三角形的每個(gè)頂點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn),然后連接得到的三個(gè)點(diǎn)即可;
(3)把BC延長(zhǎng)到C′,使CC′=BC,則C′就是C的對(duì)應(yīng)點(diǎn),然后得到B的對(duì)應(yīng)點(diǎn),即可得到所求的三角形.
解答:解:作圖如下:

點(diǎn)評(píng):本題考查了畫(huà)位似圖形及畫(huà)三角形的內(nèi)心.畫(huà)位似圖形的一般步驟為:①確定位似中心,②分別連接并延長(zhǎng)位似中心和能代表原圖的關(guān)鍵點(diǎn);③根據(jù)相似比,確定能代表所作的位似圖形的關(guān)鍵點(diǎn);順次連接上述各點(diǎn),得到放大或縮小的圖形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、畫(huà)圖題:
(1)如圖:△ABC繞O點(diǎn)旋轉(zhuǎn)后,頂點(diǎn)B的對(duì)應(yīng)點(diǎn)為E,試確定頂點(diǎn)A、C旋轉(zhuǎn)后對(duì)應(yīng)點(diǎn)位置,以及旋轉(zhuǎn)后的三角形位置
(2)△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若將此三角形沿AD將開(kāi)成為兩個(gè)三角形,在平面上把這兩個(gè)三角形拼成一個(gè)四邊形,請(qǐng)你畫(huà)出所有不同形狀的四邊形的示意圖(標(biāo)出圖中的直角)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2013•青島)在前面的學(xué)習(xí)中,我們通過(guò)對(duì)同一面積的不同表達(dá)和比較,根據(jù)圖1和圖2發(fā)現(xiàn)并驗(yàn)證了平方差公式和完全平方公式.
這種利用面積關(guān)系解決問(wèn)題的方法,使抽象的數(shù)量關(guān)系因幾何直觀而形象化.

【研究速算】
提出問(wèn)題:47×43,56×54,79×71,…是一些十位數(shù)字相同,且個(gè)位數(shù)字之和是10的兩個(gè)兩位數(shù)相乘的算式,是否可以找到一種速算方法?
幾何建模:
用矩形的面積表示兩個(gè)正數(shù)的乘積,以47×43為例:
(1)畫(huà)長(zhǎng)為47,寬為43的矩形,如圖3,將這個(gè)47×43的矩形從右邊切下長(zhǎng)40,寬3的一條,拼接到原矩形上面.
(2)分析:原矩形面積可以有兩種不同的表達(dá)方式:47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021.
用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個(gè)位數(shù)字3與7的積,構(gòu)成運(yùn)算結(jié)果.
歸納提煉:
兩個(gè)十位數(shù)字相同,并且個(gè)位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述)
十位數(shù)字加1的和與十位數(shù)字相乘,再乘以100,加上兩個(gè)個(gè)位數(shù)字的積,構(gòu)成運(yùn)算結(jié)果
十位數(shù)字加1的和與十位數(shù)字相乘,再乘以100,加上兩個(gè)個(gè)位數(shù)字的積,構(gòu)成運(yùn)算結(jié)果

【研究方程】
提出問(wèn)題:怎樣圖解一元二次方程x2+2x-35=0(x>0)?
幾何建模:
(1)變形:x(x+2)=35.
(2)畫(huà)四個(gè)長(zhǎng)為x+2,寬為x的矩形,構(gòu)造圖4
(3)分析:圖中的大正方形面積可以有兩種不同的表達(dá)方式,(x+x+2)2或四個(gè)長(zhǎng)x+2,寬x的矩形面積之和,加上中間邊長(zhǎng)為2的小正方形面積.
即(x+x+2)2=4x(x+2)+22
∵x(x+2)=35
∴(x+x+2)2=4×35+22
∴(2x+2)2=144
∵x>0
∴x=5
歸納提煉:求關(guān)于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解.
要求參照上述研究方法,畫(huà)出示意圖,并寫(xiě)出幾何建模步驟(用鋼筆或圓珠筆畫(huà)圖,并注明相關(guān)線段的長(zhǎng))
【研究不等關(guān)系】
提出問(wèn)題:怎樣運(yùn)用矩形面積表示(y+3)(y+2)與2y+5的大小關(guān)系(其中y>0)?
幾何建模:
(1)畫(huà)長(zhǎng)y+3,寬y+2的矩形,按圖5方式分割
(2)變形:2y+5=(y+3)+(y+2)
(3)分析:圖5中大矩形的面積可以表示為(y+3)(y+2);陰影部分面積可以表示為(y+3)×1,畫(huà)點(diǎn)部分部分的面積可表示為y+2,由圖形的部分與整體的關(guān)系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5
歸納提煉:
當(dāng)a>2,b>2時(shí),表示ab與a+b的大小關(guān)系.
根據(jù)題意,設(shè)a=2+m,b=2+n(m>0,n>0),要求參照上述研究方法,畫(huà)出示意圖,并寫(xiě)出幾何建模步驟(用鋼筆或圓珠筆畫(huà)圖并注明相關(guān)線段的長(zhǎng))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

將圖中的△ABC作如下運(yùn)動(dòng). 
(1)沿x軸向左平移2個(gè)單位,得到△A′B′C′,不畫(huà)圖直接寫(xiě)出發(fā)生變化后的三個(gè)頂點(diǎn)的坐標(biāo).
(2)以A點(diǎn)為位似中心放大到原來(lái)2倍,得到△AB″C″.畫(huà)出圖形并寫(xiě)出發(fā)生變化后的三個(gè)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

畫(huà)圖題:
(1)如圖:△ABC繞O點(diǎn)旋轉(zhuǎn)后,頂點(diǎn)B的對(duì)應(yīng)點(diǎn)為E,試確定頂點(diǎn)A、C旋轉(zhuǎn)后對(duì)應(yīng)點(diǎn)位置,以及旋轉(zhuǎn)后的三角形位置
(2)△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若將此三角形沿AD將開(kāi)成為兩個(gè)三角形,在平面上把這兩個(gè)三角形拼成一個(gè)四邊形,請(qǐng)你畫(huà)出所有不同形狀的四邊形的示意圖(標(biāo)出圖中的直角)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

將圖中的△ABC作如下運(yùn)動(dòng).
(1)沿x軸向左平移2個(gè)單位,得到△A′B′C′,不畫(huà)圖直接寫(xiě)出發(fā)生變化后的三個(gè)頂點(diǎn)的坐標(biāo).
(2)以A點(diǎn)為位似中心放大到原來(lái)2倍,得到△AB″C″.畫(huà)出圖形并寫(xiě)出發(fā)生變化后的三個(gè)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案