【題目】【閱讀】
如圖1,在平面直角坐標系xOy中,已知點A(a,0)(a>0),B(2,3),C(0,3).過原點O作直線l,使它經(jīng)過第一、三象限,直線l與y軸的正半軸所成角設(shè)為θ,將四邊形OABC的直角∠OCB沿直線l折疊,點C落在點D處,我們把這個操作過程記為FZ[θ,a].
(1)【理解】
若點D與點A重合,則這個操作過程為FZ[ , ];
(2)【嘗試】
若點D恰為AB的中點(如圖2),求θ;
(3)經(jīng)過FZ[45°,a]操作,點B落在點E處,若點E在四邊形0ABC的邊AB上,求出a的值;若點E落在四邊形0ABC的外部,直接寫出a的取值范圍;
(4)【探究】
經(jīng)過FZ[θ,a]操作后,作直線CD交x軸于點G,交直線AB于點H,使得△ODG與△GAH是一對相似的等腰三角形,直接寫出FZ[θ,a].
【答案】
(1)45°;3
(2)
解:如答圖1所示,若點D恰為AB的中點,連接CD并延長交x軸于點F.證明△BCD≌△AFD,進而得到△OCD為等邊三角形,則θ=30°;
(3)
解:經(jīng)過FZ[45°,a]操作,點B落在點E處,則點D落在x軸上,AB⊥直線l,
如答圖2所示:
若點E在四邊形0ABC的邊AB上,
由折疊可知,OD=OC=3,DE=BC=2.
∵AB⊥直線l,θ=45°,
∴△ADE為等腰直角三角形,
∴AD=DE=2,
∴OA=OD+AD=3+2=5,
∴a=5;
由答圖2可知,當0<a<5時,點E落在四邊形0ABC的外部.
(4)
解:FZ[30°,2+ ],F(xiàn)Z[60°,2+3 ].
如答圖3、答圖4所示.
【解析】解:(1)【理解】
若點D與點A重合,由折疊性質(zhì)可知,OA=OC=3,θ= ∠AOC=45°,
∴FZ[45°,3].
【考點精析】通過靈活運用翻折變換(折疊問題),掌握折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公樓頂端A測得旗桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1: ,則大樓AB的高度約為( 。ň_到0.1米,參考數(shù)據(jù): ≈1.41, ≈1.73, ≈2.45)
A.30.6
B.32.1
C.37.9
D.39.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列這些復雜的圖案都是在一個圖案的基礎(chǔ)上,在“幾何畫板”軟件中拖動一點后形成的,它們中每一個圖案都可以由一個“基本圖案”通過連續(xù)旋轉(zhuǎn)得來,旋轉(zhuǎn)的角度是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】Rt△ABC中,∠A = 3∠C = 90,AB = 3,點Q在邊AB上且BQ =,過Q作QF∥BC交AC于點F,點P在線段QF上,過P作PD∥AC交AB于點D,PE∥AB交BC于點E,當P到△ABC的三邊的距離之和為3時,PD + PE + PF =_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a>0)經(jīng)過原點O和點A(2,0).
(1)寫出拋物線的對稱軸與x軸的交點坐標;
(2)點(x1 , y1),(x2 , y2)在拋物線上,若x1<x2<1,比較y1 , y2的大。
(3)點B(﹣1,2)在該拋物線上,點C與點B關(guān)于拋物線的對稱軸對稱,求直線AC的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,點D在邊AB上,連接CD,將線段CD繞點C順時針旋轉(zhuǎn)90°至CE位置,連接AE.
(1)求證:AB⊥AE;
(2)若BC2=ADAB,求證:四邊形ADCE為正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,若二次函數(shù)y= x2+bx+c的圖象與x軸交于A(﹣2,0),B(3,0)兩點,點A關(guān)于正比例函數(shù)y= x的圖象的對稱點為C.
(1)求b、c的值;
(2)證明:點C在所求的二次函數(shù)的圖象上;
(3)如圖②,過點B作DB⊥x軸交正比例函數(shù)y= x的圖象于點D,連結(jié)AC,交正比例函數(shù)y= x的圖象于點E,連結(jié)AD、CD.如果動點P從點A沿線段AD方向以每秒2個單位的速度向點D運動,同時動點Q從點D沿線段DC方向以每秒1個單位的速度向點C運動.當其中一個點到達終點時,另一個點隨之停止運動,連結(jié)PQ、QE、PE.設(shè)運動時間為t秒,是否存在某一時刻,使PE平分∠APQ,同時QE平分∠PQC?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com