【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=kx+b的圖象交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(2,6),點(diǎn)B的坐標(biāo)為(n,1).
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)點(diǎn)E為y軸上一個(gè)動(dòng)點(diǎn),若S△AEB=10,求點(diǎn)E的坐標(biāo).
【答案】
(1)解:把點(diǎn)A(2,6)代入y= ,得m=12,
則y= .
把點(diǎn)B(n,1)代入y= ,得n=12,
則點(diǎn)B的坐標(biāo)為(12,1).
由直線y=kx+b過(guò)點(diǎn)A(2,6),點(diǎn)B(12,1)得
,
解得 ,
則所求一次函數(shù)的表達(dá)式為y=﹣ x+7
(2)解:如圖,直線AB與y軸的交點(diǎn)為P,設(shè)點(diǎn)E的坐標(biāo)為(0,m),連接AE,BE,
則點(diǎn)P的坐標(biāo)為(0,7).
∴PE=|m﹣7|.
∵S△AEB=S△BEP﹣S△AEP=10,
∴ ×|m﹣7|×(12﹣2)=10.
∴|m﹣7|=2.
∴m1=5,m2=9.
∴點(diǎn)E的坐標(biāo)為(0,5)或(0,9).
【解析】(1)把點(diǎn)A的坐標(biāo)代入反比例函數(shù)解析式,求出反比例函數(shù)的解析式,把點(diǎn)B的坐標(biāo)代入已求出的反比例函數(shù)解析式,得出n的值,得出點(diǎn)B的坐標(biāo),再把A、B的坐標(biāo)代入直線y=kx+b,求出k、b的值,從而得出一次函數(shù)的解析式;(2)設(shè)點(diǎn)E的坐標(biāo)為(0,m),連接AE,BE,先求出點(diǎn)P的坐標(biāo)(0,7),得出PE=|m﹣7|,根據(jù)S△AEB=S△BEP﹣S△AEP=10,求出m的值,從而得出點(diǎn)E的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,AB為⊙O的直徑,AB=4.動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒π個(gè)單位的速度在⊙O上按順時(shí)針?lè)较蜻\(yùn)動(dòng)一周.設(shè)動(dòng)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,點(diǎn)C是圓周上一點(diǎn),且∠AOC=40°,當(dāng)t=秒時(shí),點(diǎn)P與點(diǎn)C中心對(duì)稱,且對(duì)稱中心在直徑AB上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面一段:
計(jì)算
觀察發(fā)現(xiàn),上式從第二項(xiàng)起,每項(xiàng)都是它前面一項(xiàng)的倍,如果將上式各項(xiàng)都乘以,所得新算式中除個(gè)別項(xiàng)外,其余與原式中的項(xiàng)相同,于是兩式相減將使差易于計(jì)算.
解:設(shè),①
則,②
②-①得,則.
上面計(jì)算用的方法稱為“錯(cuò)位相減法”,如果一列數(shù),從第二項(xiàng)起每一項(xiàng)與前一項(xiàng)之比都相等(本例中是都等于),那么這列數(shù)的求和問(wèn)題,均可用上述“錯(cuò)位相減”法來(lái)解決.
下面請(qǐng)你觀察算式是否具備上述規(guī)律?若是,請(qǐng)你嘗試用“錯(cuò)位相減”法計(jì)算上式的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2-2(k-3)x+k2-4k-1=0.
(1)若這個(gè)方程有實(shí)數(shù)根,求k的取值范圍;
(2)若這個(gè)方程有一個(gè)根為1,求k的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖中是拋物線拱橋,P處有一照明燈,水面OA寬4m,從O、A兩處觀測(cè)P處,仰角分別為α、β,且tanα= ,tan ,以O(shè)為原點(diǎn),OA所在直線為x軸建立直角坐標(biāo)系.
(1)求點(diǎn)P的坐標(biāo);
(2)水面上升1m,水面寬多少( 取1.41,結(jié)果精確到0.1m)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若a,b互為相反數(shù),c,d互為倒數(shù),m的絕對(duì)值是1,n是有理數(shù)且既不是正數(shù)也不是負(fù)數(shù),求20161﹣(a+b)+m﹣(cd)2016+n(a+b+c+d)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=kx+b的圖象交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(2,6),點(diǎn)B的坐標(biāo)為(n,1).
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)點(diǎn)E為y軸上一個(gè)動(dòng)點(diǎn),若S△AEB=10,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為a的正方形ABCD中,E、F是邊AD,AB上兩點(diǎn)(與端點(diǎn)不重合),且AE=BF.連接CE,DF相交于點(diǎn)M,
(1)當(dāng)E為邊AD的中點(diǎn)時(shí),則DF的長(zhǎng)為 (用含a的式子表示)
(2)求證:∠MCB+∠MFB=180°.
(3)點(diǎn)M能成為DF的中點(diǎn)嗎?如果能,求出此時(shí)CM的長(zhǎng)(用含a的式子表示);如果不能,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某檢修小組乘坐一輛汽車沿東西方向的公路檢修輸電線路,規(guī)定向東為正,他們從A地出發(fā)到收工時(shí),走過(guò)的路程記錄如下:(單位:千米)
, , , , , , , .
(1)他們收工時(shí)距A地多遠(yuǎn)?
(2)他們離出發(fā)點(diǎn)A最遠(yuǎn)時(shí)有多遠(yuǎn)?
(3)汽車每千米耗油升,從出發(fā)到返回A地共耗油多少升?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com