精英家教網 > 初中數學 > 題目詳情
如圖,已知反比例函數的圖象上有點P,過P點分別作x軸和y軸的垂線,垂足分別為A、B,使四邊形OAPB為正方形,又在反比例函數圖象上有點P1,過點P1分別作BP和y軸的垂線,垂足分別為A1、B1,使四邊形B A1P1B1為正方形,則點P1的坐標是   
【答案】分析:由于四邊形OAPB為正方形,則P的縱橫坐標相等;且P的反比例函數圖象上,由此可以得到P的坐標為(1,1),然后設四邊形B A1P1B1的邊長為t;又有四邊形B A1P1B1為正方形,則點P1的坐標是(t,1+t),代入反比例函數解析式即可求得t,從而求出點P1的坐標.
解答:解:∵四邊形OAPB為正方形,
∴P的縱、橫坐標相等,
又∵P的反比例函數的圖象上,
∴P的坐標為(1,1),
設四邊形B A1P1B1的邊長為t,
又∵四邊形B A1P1B1為正方形,
則點P1的坐標是(t,1+t),
且其也在反比例函數圖象上,
將其坐標代入解析式可得:t=,
故點P1的坐標是(,).
點評:此題綜合考查了反比例函數,正方形的性質等多個知識點,此題難度稍大,綜合性比較強,注意對各個知識點的靈活應用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,已知反比例函數y=
m
x
圖象與一次函數y=kx+b的圖象均經過A(-1,4)和B(a,
4
5
)兩點,
(1)求B點的坐標及兩個函數的解析式;
(2)若一次函數y=kx+b的圖象與x軸交于點C,求C點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知反比例函數y=
kx
(k>0)的圖象經過點A(2,m),過點A作AB⊥x軸于點B,且S△AOB=3.若一次函數y=ax+1的圖象經過點A,并且與x軸相交于點C,求AO:AC的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知反比例函數y=
kx
的圖象與一次函數y=ax+b的圖象交于M(2,m)和N(-1,-4)兩點.
(1)求這兩個函數的解析式;
(2)求△MON的面積;
(3)請判斷點P(4,1)是否在這個反比例函數的圖象上,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知反比例函數y1=
kx
和一次函數y2=ax+b的圖象相交于點A和點D,且點A的橫坐標為1,點D的縱坐標為-1.過點A作AB⊥x軸于點B,△AOB的面積為1.
(1)求反比例函數和一次函數的解析式.
(2)若一次函數y2=ax+b的圖象與x軸相交于點C,求∠ACO的度數.
(3)結合圖象直接寫出:當y1>y2時,x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知反比例函數y=
k
x
的圖象經過第二象限內的點A(-1,m),AB⊥x軸于點B,△AOB的面積為2.若直線y=ax+b經過點A,并且經過反比例函數y=
k
x
的圖象上另一點C(n,一2).
(1)求直線y=ax+b的解析式;
(2)設直線y=ax+b與x軸交于點M,求AM的長;
(3)在雙曲線上是否存在點P,使得△MBP的面積為8?若存在請求P點坐標;若不存在請說明理由.

查看答案和解析>>

同步練習冊答案