【題目】如圖,拋物線與軸相交于、兩點(diǎn),與軸相交于點(diǎn),且點(diǎn)與點(diǎn)的坐標(biāo)分別為,,點(diǎn)是拋物線的頂點(diǎn).
(1)求二次函數(shù)的關(guān)系式.
(2)點(diǎn)為線段上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作軸于點(diǎn).若,的面積為.
①求與的函數(shù)關(guān)系式,寫(xiě)出自變量的取值范圍.
②當(dāng)取得最值時(shí),求點(diǎn)的坐標(biāo).
(3)在上是否存在點(diǎn),使為直角三角形?如果存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)①,;②P(,3);
(3)或
【解析】
(1)將點(diǎn)B、C的坐標(biāo)代入即可;
(2)①求出頂點(diǎn)坐標(biāo),直線MB的解析式等,由PD⊥x軸且OD=m知P(m,-2m+6),即可用含m的代數(shù)式表示出S;
②在和①的情況下,將S和m的關(guān)系式化為頂點(diǎn)式,由二次函數(shù)的圖象和性質(zhì)即可寫(xiě)出點(diǎn)P的坐標(biāo);
(3)分情況討論,當(dāng)∠CPD=90°時(shí),推出PD=CO=3,則點(diǎn)P的縱坐標(biāo)為3,即可求出點(diǎn)P的坐標(biāo);當(dāng)∠PCD=90°時(shí),證∠PDC=∠OCD,由銳角三角函數(shù)可求出m的值,即可寫(xiě)出點(diǎn)P的坐標(biāo);當(dāng)∠PDC=90°時(shí),不存在點(diǎn)P.
解:(1)將,代入,
得,
解得,
∴二次函數(shù)的解析式為;
(2)①∵
∴頂點(diǎn)M(1,4),
將直線BM的解析式設(shè)為,
將點(diǎn),M(1,4)代入,
可得,
解得,
∴直線BM的解析式為,
如圖∵PD⊥x軸且OD=m,
∴P(m,-2m+6),
∴,
即,
∵點(diǎn)為線段上一個(gè)動(dòng)點(diǎn)且,M(1,4),
∴;
②,
∴當(dāng)時(shí),S取最大值,
∴P(,3);
(3)存在,理由如下:
如圖,當(dāng)∠CPD=90°時(shí),
,
∴四邊形CODP為矩形,
∵PD=CO=3,
將代入直線,
得,
∴P;
如圖,當(dāng)∠PCD=90°時(shí),
∵OC=3,OD=m,
,
,
,
,
,
,
解得(舍去),,
∴;
當(dāng)∠PDC=90°時(shí),
∵PD⊥x軸,
∴不存在點(diǎn)P;
綜上所述,點(diǎn)P的坐標(biāo)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】垃圾的分類處理與回收利用,可以減少污染,節(jié)省資源.某城市環(huán)保部門為了提高宣傳實(shí)效,抽樣調(diào)查了部分居民小區(qū)一段時(shí)間內(nèi)生活垃圾的分類情況,其相關(guān)信息如下:
根據(jù)圖表解答下列問(wèn)題:
(1)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)在扇形統(tǒng)計(jì)圖樣中,產(chǎn)生的有害垃圾C所對(duì)應(yīng)的圓心角 度;
(3)調(diào)查發(fā)現(xiàn),在可回收物中塑料類垃圾占13%,每回收1噸塑料類垃圾可獲得0.5噸二級(jí)原料.假設(shè)該城市每月產(chǎn)生的生活垃圾為1000噸,且全部分類處理,那么每月回收的塑料類垃圾可以獲得多少噸二級(jí)原料?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正五邊形的邊長(zhǎng)為2,連接對(duì)角線AD、BE、CE,線段AD分別與BE和CE相交于點(diǎn)M、N,給出下列結(jié)論:①∠AME=108°,②AN2=AMAD;③MN=3-;④S△EBC=2-1,其中正確的結(jié)論是_________(把你認(rèn)為正確結(jié)論的序號(hào)都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)的圖象如圖,點(diǎn)位于坐標(biāo)原點(diǎn),點(diǎn),,,…,在軸的正半軸上,點(diǎn),,,…,在二次函數(shù)位于第一象限的圖象上,,,,…,都是直角頂點(diǎn)在拋物線上的等腰直角三角形,則的斜邊長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形 ABCD 中,E是BC的中點(diǎn),F是CD上一點(diǎn),AE⊥EF.有下列結(jié)論:
①∠BAE=30°;
②射線FE是∠AFC的角平分線;
③CF=CD;
④AF=AB+CF.
其中正確結(jié)論的個(gè)數(shù)為( )
A.1 個(gè)B.2 個(gè)C.3 個(gè)D.4 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人加工同一種零件,甲每天加工的數(shù)量是乙每天加工數(shù)量的1.5倍,兩人各加工300個(gè)這種零件,甲比乙少用5天.
(1)求甲、乙兩人每天各加工多少個(gè)這種零件?
(2)已知甲、乙兩人加工這種零件每天的加工費(fèi)分別是150元和120元,現(xiàn)有1500個(gè)這種零件的加工任務(wù),甲單獨(dú)加工一段時(shí)間后另有安排,剩余任務(wù)由乙單獨(dú)完成.如果總加工費(fèi)為7800元,那么甲、乙各加工了多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某建筑物的頂部有一塊標(biāo)識(shí)牌 CD,小明在斜坡上 B 處測(cè)得標(biāo)識(shí)牌頂部C 的仰角為 45°, 沿斜坡走下來(lái)在地面 A 處測(cè)得標(biāo)識(shí)牌底部 D 的仰角為 60°,已知斜坡 AB 的坡角為 30°,AB=AE=10 米.則標(biāo)識(shí)牌 CD 的高度是( )米.
A.15-5B.20-10C.10-5D.5-5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)與一次函數(shù)交于第二、四象限的,兩點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),,,點(diǎn)的坐標(biāo)為.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)請(qǐng)根據(jù)圖象直接寫(xiě)出的自變量的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com