【題目】某校想了解學(xué)生每周的課外閱讀時(shí)間情況,隨機(jī)調(diào)查了部分學(xué)生,對(duì)學(xué)生每周的課外閱讀時(shí)間x(單位:小時(shí))進(jìn)行分組整理,并繪制了如圖所示的不完整的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)補(bǔ)全頻數(shù)分布直方圖;
(2)求扇形統(tǒng)計(jì)圖中m的值和“E”組對(duì)應(yīng)的圓心角度數(shù);
(3)請(qǐng)估計(jì)該校3000名學(xué)生中每周的課外閱讀時(shí)間不小于6小時(shí)的人數(shù).
【答案】(2)14.4°(3)870
【解析】試題分析:(1)根據(jù)A或B的人數(shù)與所占的百分?jǐn)?shù)可求出總的,再求根據(jù)D組得百分比求得D組得人數(shù),然后補(bǔ)全條形統(tǒng)計(jì)圖;
(2)用C的人數(shù)除以總?cè)藬?shù),求得m的值,用E的人數(shù)除以總?cè)藬?shù),再乘以360°即可求出扇形的度數(shù);
(3)找出不小于6的組別是D、E組,然后用二者的百分?jǐn)?shù)的和乘以總?cè)藬?shù)即可.
試題解析:(1)補(bǔ)全頻數(shù)分布直方圖,如圖所示.
(2)∵10÷10%=100,
∴40÷100=40%,
∴m=40.
∵4÷100=4%
∴“E”組對(duì)應(yīng)的圓心角度數(shù)
∴4%×360°=14.4°.
(寫成14.4,也給分)
(3)3000×(25%+4%)=870人.
答:估計(jì)該校學(xué)生中每周的課外閱讀時(shí)間不小于6小時(shí)的人數(shù)是870人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E,F是四邊形ABCD對(duì)角線AC上的兩點(diǎn),AD∥BC,DF∥BE,AE=CF.
求證:(1)△AFD≌△CEB;
(2)四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在菱形ABCD中,∠B=60°,M為AB的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿B→C→D的路徑運(yùn)動(dòng),到達(dá)點(diǎn)D時(shí)停止.連接MP,設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,MP2=y,若y與x的函數(shù)圖象大致如圖②所示,則菱形ABCD的周長(zhǎng)為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知:AB∥CD,點(diǎn)E,F分別在AB,CD上,且OE⊥OF.
(1)求證:∠1+∠2=90°;
(2)如圖2,分別在OE,CD上取點(diǎn)G,H,使FO平分∠CFG,EO平分∠AEH,求證:FG∥EH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形網(wǎng)格中, 的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)的坐標(biāo)分別為、、,試解答下列問(wèn)題:
(1)畫出關(guān)于原點(diǎn)對(duì)稱的;
(2)平移,使點(diǎn)移到點(diǎn),畫出平移后的并寫出點(diǎn)、的坐標(biāo);
(3)在、、中, 與哪個(gè)圖形成中心對(duì)稱?試寫出其對(duì)稱中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上,點(diǎn)A表示﹣10,點(diǎn)B表示11,點(diǎn)C表示18.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿?cái)?shù)軸正方向以每秒2個(gè)單位的速度勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿?cái)?shù)軸負(fù)方向以每秒1個(gè)單位的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t為何值時(shí),P、Q兩點(diǎn)相遇?相遇點(diǎn)M所對(duì)應(yīng)的數(shù)是多少?
(2)在點(diǎn)Q出發(fā)后到達(dá)點(diǎn)B之前,求t為何值時(shí),點(diǎn)P到點(diǎn)O的距離與點(diǎn)Q到點(diǎn)B的距離相等;
(3)在點(diǎn)P向右運(yùn)動(dòng)的過(guò)程中,N是AP的中點(diǎn),在點(diǎn)P到達(dá)點(diǎn)C之前,求2CN﹣PC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的對(duì)角線AC,BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=60°,AB=BC,連結(jié)OE.下列結(jié)論:
①∠CAD=30°;②SABCD=AB·AC;③OB=AB;④OE=BC,成立的結(jié)論有______.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B在線段AC上,點(diǎn)E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分別是AE,CD的中點(diǎn)。試探索BM和BN的關(guān)系,并證明你的結(jié)論。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com