【題目】如圖,四邊形ABCD是菱形,點(diǎn)G是BC延長線上一點(diǎn),連接AG,分別交BD、CD于點(diǎn)E、F,連接CE.
(1)求證:∠DAE=∠DCE;
(2)當(dāng)AE=2EF時(shí),判斷FG與EF有何等量關(guān)系?并證明你的結(jié)論.

【答案】
(1)證明:∵四邊形ABCD是菱形,

∴AD=CD,∠ADE=∠CDB;

在△ADE和△CDE中,

∴△ADE≌△CDE,

∴∠DAE=∠DCE


(2)解:判斷FG=3EF.

∵四邊形ABCD是菱形,

∴AD∥BC,

∴∠DAE=∠G,

由題意知:△ADE≌△CDE

∴∠DAE=∠DCE,

則∠DCE=∠G,

∵∠CEF=∠GEC,

∴△ECF∽△EGC,

,

∵△ADE≌△CDE,

∴AE=CE,

∵AE=2EF,

= ,

∴EG=2AE=4EF,

∴FG=EG﹣EF=4EF﹣EF=3EF.


【解析】(1)根據(jù)四邊形ABCD是菱形可得出△ADE≌△CDE就可證明;(2)根據(jù)有兩組角對應(yīng)相等的兩個(gè)三角形相似得到△CEF∽△GEC,可得EF:EC=CE:GE,又因?yàn)椤鰽BE≌△CBE AE=2EF,就能得出FG=3EF.
【考點(diǎn)精析】本題主要考查了菱形的性質(zhì)和相似三角形的判定與性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對角線長的積的一半;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的半圓交BC于點(diǎn)D,過點(diǎn)D作EF⊥AC于點(diǎn)F,交AB的延長線于點(diǎn)E.
(1)求證:EF是⊙O的切線;
(2)當(dāng)BD=3,DF= 時(shí),求直徑AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(聊城臨清市期末)如圖,四邊形ABCD中,ABCD,對角線AC,BD交于點(diǎn)O,下列條件中不能說明四邊形ABCD是平行四邊形的是(  )

A. ADBC B. ACBD

C. ABCD D. BACDCA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D、E分別在AC、AB邊上,且BC=BD,AD=DE=EB,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正比例函數(shù)y=kx經(jīng)過點(diǎn)A,點(diǎn)A在第四象限,過點(diǎn)AAH⊥x軸,垂足為點(diǎn)H,點(diǎn)A的橫坐標(biāo)為3,且△AOH的面積為3.

(1)求正比例函數(shù)的解析式;

(2)在x軸上能否找到一點(diǎn)P,使△AOP的面積為5?若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一個(gè)四邊形的邊角料,東東通過測量,獲得了如下數(shù)據(jù):AB=3cmBC=12cm,CD=13cm,AD=4cm,東東由此認(rèn)為這個(gè)四邊形中∠A恰好是直角,你認(rèn)為東東的判斷正確嗎?如果你認(rèn)為他正確,請說明其中的理由;如果你認(rèn)為他不正確,那你認(rèn)為需要什么條件,才可以判斷∠A是直角?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AC,BD相交于點(diǎn)O,OAC的中點(diǎn),AD//BC,AC=8,BD=6.

(1)求證:四邊形ABCD是平行四邊形;

(2)若ACBD,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級某班級部分同學(xué)去植樹,若每人平均植樹7棵,還剩9棵,若每人平均植樹9棵,則有1位同學(xué)植樹的棵數(shù)不到8棵.若設(shè)同學(xué)人數(shù)為x人,植樹的棵數(shù)為(7x+9)棵,下列各項(xiàng)能準(zhǔn)確的求出同學(xué)人數(shù)與種植的樹木的數(shù)量的是( 。

A. 7x+9≤8+9(x﹣1) B. 7x+9≥9(x﹣1)

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC的面積為24,點(diǎn)D在線段AC上,點(diǎn)F在線段BC的延長線上,且BF=4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積為(

A. 3 B. 4 C. 6 D. 8

查看答案和解析>>

同步練習(xí)冊答案