【題目】已知△ABC中,∠ACB=90°,AC=3,tanA=,CD⊥AB于點D,DE⊥AC,點F在線段BC上,EF交CD于點M.
(1)求CD的長;
(2)若△EFC與△ABC相似,試求線段EM的長.
【答案】(1)2.4(2)或
【解析】
試題分析:(1)由已知條件易求BC、AB的長,再根據△ACB的面積為定值即可求出CD的長,
(2)若△EFC與△ABC相似,則CE可以和BC為對應邊,也可以和AC為對應邊,所以此題要分兩種情況討論求出CF的長,再由△DEM∽△CFM即可求出不同情況下EM的長.
解:(1)∵∠ACB=90°,AC=3,tanA=,
∴BC=4,
∴AB==5,
∵CD⊥AB于點D,
∴AC×BC=AB×CD,
∴CD=2.4;
(2)∵CD⊥AB于點D,tanA=,AC=3,
∴AD=,
∵DE⊥AC,tanA=,
∴AE=,DE=,
∴CE=3﹣=,
若△EFC與△ABC相似,
則或,
解得:CF=或,EF=或,
∵DE⊥AC,BC⊥AC,
∴△DEM∽△CFM,
∴,
∴EM=或.
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD的對角線相交于點O,PB∥AC,PC∥BD,PB、PC相交于點P.
(1)猜想四邊形PCOB是什么四邊形,并說明理由;
(2)當矩形ABCD滿足什么條件時,四邊形PCOB是正方形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】興發(fā)服裝店老板用4500元購進一批某款T恤衫,由于深受顧客喜愛,很快售完,老板又用4950元購進第二批該款式T恤衫,所購數量與第一批相同,但每件進價比第一批多了9元.
(1)第一批該款式T恤衫每件進價是多少元?
(2)老板以每件120元的價格銷售該款式T恤衫,當第二批T恤衫售出時,出現了滯銷,于是決定降價促銷,若要使第二批的銷售利潤不低于650元,剩余的T恤衫每件售價至少要多少元?(利潤=售價﹣進價)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知點E在正方形ABCD的邊BC上,若∠AEF=90°,且EF交正方形外角的平分線CF于點F.
(1)圖1中若點E是邊BC的中點,我們可以構造兩個三角形全等來證明AE=EF,請敘述你的一個構造方案,并指出是哪兩個三角形全等(不要求證明);
(2)如圖2,若點E在線段BC上滑動(不與點B,C重合).
①AE=EF是否總成立?請給出證明;
②在圖2的AB邊上是否存在一點M,使得四邊形DMEF是平行四邊形?若存在,請給予證明;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把下列各數分類
﹣3,0.45, ,0,9,﹣1,﹣1,10,﹣3.14
(1)正整數:{ …}
(2)負整數:{ …}
(3)整數:{ …}
(4)分數:{ …}.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com