【題目】按照有關規(guī)定:距高鐵軌道 200米以內的區(qū)域內不宜臨路新建學校、醫(yī)院、敬老院和集中住宅區(qū)等噪聲敏感建筑物.
如圖是一個小區(qū)平面示意圖,矩形ABEF為一新建小區(qū),直線MN為高鐵軌道,C、D是直線MN上的兩點,點C、A、B在一直線上,且DA⊥CA,∠ACD=30°.小王看中了①號樓A單元的一套住宅,與售樓人員的對話如下:
(1)小王心中一算,發(fā)現(xiàn)售樓人員的話不可信,請你用所學的數(shù)學知識說明理由;
(2)若一列長度為228米的高鐵以252千米/小時的速度通過時,則A單元用戶受到影響時間有多長?
(溫馨提示: ≈1.4, ≈1.7, ≈6.1)
【答案】
(1)
解:作過點A作AG⊥MN,垂足為G,
∵∠ACD=30°,DA⊥CA,
∴∠ADC=60°,
∵AD=220米,
∴AG=ADsin60°=110 ≈187<200,
∴A單元用戶會受到影響,售樓人員的說法不可信.
(2)
解:在MN上找到點S、T,使得AS=AT=200米
∴GT=GS= =10 米
∴ST=2GT=20 ≈122米
又∵速度V= =70(米/秒)
∴時間t= =5秒,即受影響的時間為5秒.
【解析】(1)作過點A作AG⊥MN,垂足為G,根據(jù)三角函數(shù)可求AG的長,再與200米比較大小即可求解;(2)在MN上找到點S、T,使得AS=AT=200米,根據(jù)勾股定理可求GT,根據(jù)三角函數(shù)可求ST,依此可求速度,進一步得到A單元用戶受到影響的時間.
科目:初中數(shù)學 來源: 題型:
【題目】為提倡全民健身活動, 某社區(qū)準備購買羽毛球和羽毛球拍供社區(qū)居民使用, 某體育用品商店羽毛球每盒 10 元, 羽毛球拍每副 40 元 .該商店有兩種優(yōu)惠方案,方案一: 不購買會員卡時, 羽毛球享受 8.5 折優(yōu)惠, 羽毛球拍購買 5 副(含5 副) 以上才能享受 8.5 折優(yōu)惠, 5 副以下必須按定價購買;方案二: 每張會員卡 20 元, 辦理會員卡時, 全部商品享受 8 折優(yōu)惠 . 設該社區(qū)準備購買羽毛球拍 6 副, 羽毛球盒, 請回答下列問題:
(1)如果一位體育愛好者按方案一只購買了 4 副羽毛球拍,求他購買時所需要的費用;
(2)用含的代數(shù)式分別表示該社區(qū)按方案一和方案二購買所需要的錢數(shù);
(3)①直接寫出一個的值, 使方案一比方案二優(yōu)惠;
②直接寫出一個的值, 使方案二比方案一優(yōu)惠 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了深化課程改革,某校積極開展校本課程建設,計劃成立“文學鑒賞”、“科學實驗”、“音樂舞蹈”和“手工編織”等多個社團,要求每位學生都自主選擇其中一個社團.為此,隨機調查了本校各年級部分學生選擇社團的意向,并將調查結果繪制成如下統(tǒng)計圖表(不完整):
選擇意向 | 所占百分比 |
文學鑒賞 | a |
科學實驗 | 35% |
音樂舞蹈 | b |
手工編織 | 10% |
其他 | c |
根據(jù)統(tǒng)計圖表中的信息,解答下列問題:
(1)本次調查的學生總人數(shù)為;
(2)補全條形統(tǒng)計圖;
(3)將調查結果繪成扇形統(tǒng)計圖,則“音樂舞蹈”社團所在扇形所對應的圓心角為;
(4)若該校共有1200名學生,試估計全校選擇“科學實驗”社團的學生人數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,按下列要求作圖(第(1)、(2)小題用尺規(guī)作圖,第(3)小題不限作圖工具,保留作圖痕跡).
(1)作∠B的角平分線;
(2)作BC的中垂線;
(3)以BC邊所在直線為對稱軸,作△ABC的軸對稱圖形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學九(1)班為了了解全班學生喜歡球類活動的情況,采取全面調查的方法,從足球、乒乓球、籃球、排球等四個方面調查了全班學生的興趣愛好,根據(jù)調查的結果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖①,②,要求每位學生只能選擇一種自己喜歡的球類),請你根據(jù)圖中提供的信息解答下列問題:
(1)九(1)班的學生人數(shù)為 , 并把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中m= , n= , 表示“足球”的扇形的圓心角是度;
(3)排球興趣小組4名學生中有3男1女,現(xiàn)在打算從中隨機選出2名學生參加學校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學生恰好是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點O在對角線AC上,以OA的長為半徑的圓O與AD、AC分別交于點E、F,且∠ACB=∠DCE.
(1)判斷直線CE與⊙O的位置關系,并證明你的結論;
(2)若tan∠ACB= ,BC=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB=10,P是線段AB上的任意一點,在AB的同側分別以AP、PB為邊作等邊三角形APC和等邊三角形PBD,連結CD.
(1)當AP=6時,求CD的長;
(2)當AP為多少時,CD的值最小,最小值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,AD∥BC,E,F(xiàn),G,H分別是梯形各邊的中點.
(1)請用全等符號表示出圖中所有的全等三角形(不得添加輔助線),并選其中一對加以證明;
(2)求證:四邊形EFGH是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com