【題目】下列計算正確的是(  。

A. a6÷a2=a4 B. (2a23=6a6

C. (a23=a5 D. (a+b)2=a2+b2

【答案】A

【解析】

根據(jù)同底數(shù)冪相除,底數(shù)不變指數(shù)相減;積的乘方,把每一個因式分別乘方,再把所得的冪相乘;冪的乘方,底數(shù)不變指數(shù)相乘;完全平方公式:(a±b)2=a2±2ab+b2;對各選項分析判斷后利用排除法求解.

解:A、a6÷a2=a4,故A正確;

B、(2a23=8a6,故B錯誤;

C、(a23=a6,故C錯誤;

D、(a+b)2=a2+2ab+b2,故D錯誤.

故選:A.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點(-3,-2)( )

A. 第一象限B. 第二象限C. 第三象限D. 第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中, AB、BC、AC三邊的長分別為 、 、 ,求這個三角形的面積.小華同學在解答這道題時,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.這種方法叫做構(gòu)圖法.

(1)△ABC的面積為:
(2)若△DEF三邊的長分別為 、 ,請在圖2的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并利用構(gòu)圖法求出它的面積.

(3)如圖3,一個六邊形的花壇被分割成7個部分,其中正方形PRBA,RQDC,QPFE的面積分別為13、10、17,請利用第2小題解題方法求六邊形花壇ABCDEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等腰三角形一腰上的高線等于腰長的一半,那么這個等腰三角形的一個底角等于(

A. 15°75° B. 15° C. 75° D. 150°30°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在“We like maths.”這個句子的所有字母中,字母“e”出現(xiàn)的頻數(shù)是( 。
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等腰三角形的兩邊長分別為 6 1,則這個等腰三角形的周長為( )

A. 13 B. 8 C. 10 D. 8 13

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O是坐標原點,點A的坐標為(4,0),點B的坐標為(0,b)(b>0),點P是直線AB上位于第二象限內(nèi)的一個動點,過點P作PC⊥x軸于點C,記點P關(guān)于y軸的對稱點為Q,設(shè)點P的橫坐標為a.

(1)當b=3時,
①求直線AB的解析式;
②若QO=QA,求P點的坐標.
(2)是否同時存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有滿足條件的a、b的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在聯(lián)歡會上,有A、BC三名選手站在一個三角形的三個頂點位置上,他們在玩搶凳子游戲,要求在他們中間放一個木凳,誰先搶到凳子誰獲勝,為使游戲公平,則凳子應(yīng)放的最適當?shù)奈恢檬窃?/span>ABC()

A. 三邊中垂線的交點 B. 三邊中線的交點

C. 三條角平分線的交點 D. 三邊上高的交點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某校九年級學生體育測試成績情況,現(xiàn)從中隨機抽取部分學生的體育成績統(tǒng)計如下,其中右側(cè)扇形統(tǒng)計圖中的圓心角α36°

根據(jù)上面提供的信息,回答下列問題:

1)寫出樣本容量、m的值及抽取部分學生體育成績的中位數(shù);

2)已知該校九年級共有500名學生,如果體育成績達28分以上(含28分)為優(yōu)秀,請估計該校九年級學生體育成績達到優(yōu)秀的總?cè)藬?shù).

查看答案和解析>>

同步練習冊答案