【題目】數(shù)軸是一個非常重要的數(shù)學(xué)工具,通過它把數(shù)和數(shù)軸上的點建立起對應(yīng)關(guān)系,揭示了數(shù)與點之間的內(nèi)在的聯(lián)系,它是“數(shù)形結(jié)合”的基礎(chǔ),請利用數(shù)軸解決下列問題:

1)畫出數(shù)軸,并在數(shù)軸上畫出表示下列各數(shù)的點:

2)用“>”號將(1)中各數(shù)連接起來;

3)直接填空:數(shù)軸上若點表示的數(shù)為點表示的數(shù)為-2,則之間的距離是

4)直接填空:若數(shù)軸上點表示的數(shù)為,且兩點間的距離為,則點表示的數(shù)為

【答案】1)見解析;(231.50>﹣2>﹣4.5;(36; 41或﹣7

【解析】

1)畫出數(shù)軸,將數(shù)據(jù)標(biāo)注在數(shù)軸上即可;

2)根據(jù)數(shù)軸上的點,左邊的總比右邊的小,即可排列出大小關(guān)系;

3)根據(jù)數(shù)軸上兩點間的距離等于兩個數(shù)之差的絕對值可得答案;

4)設(shè)B點表示的數(shù)為x,根據(jù)兩點間的距離公式,解絕對值方程即可得答案.

解:(1)如圖所示,

231.50>﹣2>﹣4.5;

3AB之間的距離為,

故答案為:6;

4)設(shè)B點表示的數(shù)為x ,由題意得

,即

故答案為:1或﹣7

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:直線l1與直線l2平行,且它們之間的距離為3,A,B是直線l1上的兩個定點,C,D是直線l2上的兩個動點(點C在點D的左側(cè)),AB=CD=6,連接AC、BD、BC,將ABC沿BC折疊得到A1BC.(如圖1)

(1)當(dāng)A1D重合時(如圖2),四邊形ABDC是什么特殊四邊形,為什么?

(2)當(dāng)A1D不重合時,連接A1D,則A1 DBC(不需證明),此時若以A1,B,C,D為頂點的四邊形為矩形,且矩形的邊長分別為a,b,求(a+b)2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長為 ,寬為 的大長方形被分割為 小塊,除陰影 , 外,其余 塊是形狀、大小完全相同的小長方形,其較短一邊長為

1)每個小長方形較長的一邊長是 (用含 的代數(shù)式表示).

2)分別用含 , 的代數(shù)式表示陰影 的面積,并計算陰影 A 的面積與陰影B的面積的差.

3)當(dāng) 時,陰影 與陰影 的面積差會隨著 的變化而變化嗎?請你作出判斷,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,P是∠BAC內(nèi)的一點,PEAB,PFAC,垂足分別為點E,FAE=AF.求證:

1PE=PF;

2)點P在∠BAC的平分線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,計劃圍一個面積為50 m2的長方形場地,一邊靠舊墻(墻長為10 m),另外三邊用籬笆圍成,并且它的長與寬之比為52.討論方案時,小英說:我們不可能圍成滿足要求的長方形場地.小軍說:面積和長寬比例是確定的,肯定可以圍得出來.請你判斷誰的說法正確,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,∠A=30°,AB的垂直平分線分別交AB、AC于點D、E,則以下AECE的數(shù)量關(guān)系正確的是( 。

A.AE=CEB.AE=CEC.AE=CED.AE=2CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長是4,點EAB邊上一動點,連接CE,過點BBGCE于點G,點PAB邊上另一動點,則PD+PG的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,是用4個全等的直角三角形與1個小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用x,y表示直角三角形的兩直角邊(xy),下列四個說法:①x2+y2=49,②x-y=2,③2xy+4=49,④x+y=.其中說法正確的結(jié)論有_______.(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線分別交軸,軸于點.

1)當(dāng),自變量的取值范圍是 (直接寫出結(jié)果);

2)點在直線.

①直接寫出的值為 ;

②過點作軸于點,求直線的解析式.

查看答案和解析>>

同步練習(xí)冊答案