【題目】已知函數(shù)y=x2,y=(x+2)2+2y=(x+2)2﹣3.

(1)在同一個平面直角坐標(biāo)系中畫出這三個函數(shù)的圖象;

(2)當(dāng)圖中二次函數(shù)的函數(shù)值yx的增大而同時增大時,求x的取值范圍;當(dāng)函數(shù)值yx的增大面同時減小時,求x的取值范圍.(直接寫答案)

【答案】(1)見解析;(2)二次函數(shù)的函數(shù)值yx的增大而同時增大時,x的取值范圍x>0;當(dāng)函數(shù)值yx的增大面同時減小時,x的取值范圍x<﹣2.

【解析】

(1)利用描點法畫出函數(shù)圖象即可;

(2)觀察圖象即可解決問題。

(1)函數(shù)圖象如圖所示,

(2)觀察圖象可知,二次函數(shù)的函數(shù)值yx的增大而同時增大時,x的取值范圍x>0;當(dāng)函數(shù)值yx的增大面同時減小時,x的取值范圍x<﹣2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明袋子中有1個紅球和n個白球,這些球除顏色外無其他差別.

(1)當(dāng)n=l時,從袋中隨機摸出1個球,摸到紅球與摸到白球的可能性是否相同? (填“相同”或“不相同”)

(2)從袋中隨機摸出1個球,記錄其顏色,然后放回,大量重復(fù)該實驗,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定于0.25,則n的值是 ;

(3)當(dāng)n=2時,請用列表或畫樹狀圖的方法求兩次摸出的球顏色不同的概率(摸出一個球,不放回,然后再摸一個球).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20194月,第二屆“一帶一路”國際合作高峰論壇在北京舉行,共簽署了總額640多億美元的項目合作協(xié)議。某廠準(zhǔn)備生產(chǎn)甲、乙兩種商品共8萬件銷往“一帶一路”沿線國家和地區(qū),已知2件甲種商品與3件乙商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500.

1)甲種商品與乙種商品的銷售單價各是多少元?(列二元一次方程組解應(yīng)用題)

2)設(shè)甲、乙兩種商品的銷售總收入為萬元,銷售甲種商品萬件,

①寫出之間的函數(shù)關(guān)系式;

②若甲、乙兩種商品的銷售收入為5400萬元,則銷售甲種商品多少萬件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】建立適當(dāng)?shù)淖鴺?biāo)系,運用函數(shù)知識解決下面的問題:

如圖,是某條河上的一座拋物線形拱橋,拱橋頂部點E到橋下水面的距離EF3米時,水面寬AB6米,一場大雨過后,河水上漲,水面寬度變?yōu)?/span>CD,且CD=2米,此時水位上升了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線x軸交于點A,與y軸交于點C.拋物線經(jīng)過A,C兩點,且與x軸交于另一點BB在點A右側(cè)

1求拋物線的解析式及點B坐標(biāo);

2若點M是線段BC上的一動點,過點M的直線EF平行y軸交x軸于點F,交拋物線于點E.求ME長的最大值;

3試探究當(dāng)ME取最大值時,在拋物線上、x軸下方是否存在點P,使以M,F(xiàn),B,P為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,邊長不等的正方形依次排列,每個正方形都有一個頂點落在一三象限角平分線上,從左向右第3個正方形中的一個頂點A的坐標(biāo)為(8,4),陰影三角形部分的面積從左向右依次記為S1、S2、S3、、Sn,則第4個正方形的邊長是__,Sn的值為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtOAB的直角頂點Ax軸的正半軸上,若頂點B的縱坐標(biāo)為2,∠B60°,OCAC

1)請寫出A、B、C三點的坐標(biāo);

2)點P是斜邊OB上的一個動點,則PAC的周長的最小值為多少?

3)若點POB的中點,點EAO邊上,將OPE沿PE翻折,使得點O落在O'處,當(dāng)O'EAC時,在坐標(biāo)平面內(nèi)是否存在一點Q,使得BAQ≌△OPE,若存在,請直接寫出Q點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1CA=CB,CD=CE,∠ACB=DCE

1)求證:BE=AD;

2)當(dāng)α=90°時,取AD,BE的中點分別為點PQ,連接CP,CQ,PQ,如圖②,判斷CPQ的形狀,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AE平分∠BAD,交BC于點E,且ABAE,延長ABDE的延長線交于點F.下列結(jié)論中:①△ABC≌△AED;②△ABE是等邊三角形;③ADAF;④SABESCDE;⑤SABESCEF.其中正確的是_____

查看答案和解析>>

同步練習(xí)冊答案