【題目】如圖,在平面直角坐標系中,直線x軸交于點A,與y軸交于點C.拋物線經(jīng)過AC兩點,且與x軸交于另一點BB在點A右側(cè)

1求拋物線的解析式及點B坐標;

2若點M是線段BC上的一動點,過點M的直線EF平行y軸交x軸于點F,交拋物線于點E.求ME長的最大值;

3試探究當ME取最大值時,在拋物線上、x軸下方是否存在點P,使以M,F(xiàn),B,P為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標;若不存在,試說明理由.

【答案】見解析

【解析】

試題分析:1求出點A,C的坐標,然后帶入,解方程組即可;2求出直線BC的解析式是yx-3,根據(jù)點M在直線BC 上,設(shè)Mx,x-3,則Ex,x2-2x-3

,表示出線段ME的長,用配方法可求出最大值;3設(shè)在拋物線x軸下方存在點P,使以P,MF,B為頂點的四邊形是平行四邊形,求出點P的坐標,然后判斷點P是不是在拋物線上即可.

試題解析:解:1y=0時,-3x-3=0,x=-1,A-1, 0

x=0時,y=-3,C0,-3

拋物線過A,C兩點,

拋物線的解析式是yx2-2x-3.

y=0時, x2-2x-3=0,解得 x1=-1,x2=3.

B3, 0

21 B3, 0, C0,-3,

直線BC的解析式是yx-3.

設(shè)Mxx-3)(0x3,則Exx2-2x-3

MEx-3x2-2x-3=-x2+3x=-2.

x時,ME的最大值為.

3不存在.由2 ME 取最大值時,

ME, MFBFOBOF.

設(shè)在拋物線x軸下方存在點P,使以PM,F,B為頂點的四邊形是平行四邊形,

BPMF,BFPM.P1 P2.

P1時,由1yx2-2x-3=-3,P1不在拋物線上.

P2時,由1yx2-2x-3=0

P2不在拋物線上.

綜上所述:在拋物線上x軸下方不存在點P,使以PM,FB為頂點的四邊形是平行四邊形

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某數(shù)學(xué)活動小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30,朝大樹方向下坡走6米到達坡底A處,在A處測得大樹頂端B的仰角是48°. 若坡角∠FAE=30°,求大樹的高度. (結(jié)果保留整數(shù),參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11, ≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測量路燈(OS)的高度,把一根長1.5米的竹竿(AB)豎直立在水平地面上,測得竹竿的影子(BC)長為1米,然后拿竹竿向遠離路燈方向走了3.2米(BB),再把竹竿豎立在地面上,測得竹竿的影長(BC)為1.8米,求路燈離地面的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校計劃租用6輛客車送一批師生參加一年一度的哈爾濱冰雕節(jié),感受冰雕藝術(shù)的魅力.現(xiàn)有甲、乙兩種客車,它們的載客量和租金如下表.設(shè)租用甲種客車x輛,租車總費用為y元.

甲種客車

乙種客車

載客量(人/輛)

45

30

租金(元/輛)

280

200

(1)求出y(元)與x(輛)之間的函數(shù)關(guān)系式,指出自變量的取值范圍;

(2)若該校共有240名師生前往參加,領(lǐng)隊老師從學(xué)校預(yù)支租車費用1650元,試問預(yù)支的租車費用是否可以結(jié)余?若有結(jié)余,最多可結(jié)余多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=5AD=4,BD=DC=3,且DE⊥ABE,DF⊥AC于點F

1)請寫出與A點有關(guān)的三個正確結(jié)論;

2DEDF在數(shù)量上有何關(guān)系?并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的st的關(guān)系.

(1)L1表示哪輛汽車到甲地的距離與行駛時間的關(guān)系?

(2)汽車B的速度是多少?

(3)求L1,L2分別表示的兩輛汽車的st的關(guān)系式.

(4)2小時后,兩車相距多少千米?

(5)行駛多長時間后,A、B兩車相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,PA、PB為⊙O的切線,M、NPA、AB的中點,連接MN交⊙OC,連接PC交⊙OD,連接NDPBQ,求證:MNQP為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,觀察數(shù)軸,請回答:

1)點C與點D的距離為______ ,點B與點D的距離為______ ;

2)點B與點E的距離為______ ,點A與點C的距離為______ ;

發(fā)現(xiàn):在數(shù)軸上,如果點M與點N分別表示數(shù)m,n,則他們之間的距離可表示為 ______(用mn表示)

3)利用發(fā)現(xiàn)的結(jié)論解決下列問題: 數(shù)軸上表示x的點PB之間的距離是1,則 x 的值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖A在數(shù)軸上對應(yīng)的數(shù)為-2.

(1)B在點A右邊距離A4個單位長度,則點B所對應(yīng)的數(shù)是_____.

(2)(1)的條件下,點A以每秒2個單位長度沿數(shù)軸向左運動,點B以每秒3個單位長度沿數(shù)軸向右運動.現(xiàn)兩點同時運動,當點A運動到-6的點處時,求A、B兩點間的距離.

(3)(2)的條件下,現(xiàn)A點靜止不動,B點以原速沿數(shù)軸向左運動,經(jīng)過多長時間A、B兩點相距4個單位長度.

查看答案和解析>>

同步練習(xí)冊答案