如圖,在等腰梯形ABCD中,∠C=60°,AD∥BC,且AD=DC,E、F分別在AD、DC的延長線上,且DE=CF,AF、BE交于點P.
(1)求證:AF=BE;
(2)請你猜測∠BPF的度數(shù),并證明你的結(jié)論。
(1)根據(jù)等腰梯形的性質(zhì)可得,由AD=DC,可得,,即得,問題得證;(2)120°
【解析】
試題分析:(1)根據(jù)等腰梯形的性質(zhì)可得,由AD=DC,可得,,即得,問題得證;
(2)由可得,根據(jù)三角形的外角的性質(zhì)可得,再根據(jù)平行線的性質(zhì)即可求得結(jié)果.
(1)∵在等腰梯形ABCD中
∴
又∵,
∴
又∵,
∴
∴,
∴;
(2)猜測
∵,
∴
∵
∵AD∥BC,
∴
考點:等腰梯形的性質(zhì),全等三角形的判定和性質(zhì),三角形的外角的性質(zhì)
點評:全等三角形的判定和性質(zhì)是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考中半徑常見的知識點,一般難度不大,需熟練掌握.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:中考必備’04全國中考試題集錦·數(shù)學 題型:044
如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點P從A點出發(fā)沿AD邊向點D移動,點Q自A點出發(fā)沿A→B→C的路線移動,且PQ∥DC,若AP=x,梯形位于線段PQ右側(cè)部分的面積為S.
(1)分別求出當點Q位于AB、BC上時,S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時,x的值是多少?
(3)當(2)的條件下,設(shè)線段PQ與梯形AB∥⊥CD的中位線EF交于O點,那么OE與OF的長度有什么關(guān)系?借助備用圖說明理由;并進一步探究:對任何一個梯形,當一直線l經(jīng)過梯形中位線的中點并滿足什么條件時,一定能平分梯形的面積?(只要求說出條件,不需要證明)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com