【題目】如圖:在ABC中,AB=13,BC=12,點(diǎn)D,E分別是AB,BC的中點(diǎn),連接DE,CD,如果DE=2.5,那么ACD的周長(zhǎng)是_____

【答案】18

【解析】

根據(jù)三角形中位線定理得到AC=2DE=5,ACDE,根據(jù)勾股定理的逆定理得到∠ACB=90°,根據(jù)線段垂直平分線的性質(zhì)得到DC=BD,根據(jù)三角形的周長(zhǎng)公式計(jì)算即可.

D,E分別是AB,BC的中點(diǎn),

AC=2DE=5,ACDE,

AC2+BC2=52+122=169,

AB2=132=169,

AC2+BC2=AB2,

∴∠ACB=90°

ACDE,

∴∠DEB=90°,又∵EBC的中點(diǎn),

∴直線DE是線段BC的垂直平分線,

DC=BD,

∴△ACD的周長(zhǎng)=AC+AD+CD=AC+AD+BD=AC+AB=18,

故答案為18.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程(1):2x2-4x-5=0.(公式法) (2) x2-4x+1=0.(配方法)

(3)(y-1)2+2y(1-y)=0.(因式分解法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn) C RtACB RtDCE 的公共點(diǎn)ACB=DCE=90°,連 AD、BE,過(guò)點(diǎn) C CFAD 于點(diǎn) F,延長(zhǎng) FC BE 于點(diǎn) G. AC=BC=25,CE=15, DC=20,的值為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,下列條件不能判定這個(gè)四邊形是平行四邊形的是

A.ABDC,ADBC  B.AB=DC,AD=BC

C.AO=CO,BO=DO   D.ABDC,AD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),A,B兩點(diǎn)的坐標(biāo)分別為(-2,0),(8,0),y軸交于點(diǎn)C(0,-4),連接BC,BC為一邊,點(diǎn)O為對(duì)稱中心作菱形BDEC,點(diǎn)Px軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過(guò)點(diǎn)Px軸的垂線L交拋物線于點(diǎn)Q,BD于點(diǎn)M.

(1)求拋物線的解析式;

(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),試探究m為何值時(shí),四邊形CQMD是平行四邊形?

(3)位于第四象限內(nèi)的拋物線上是否存在點(diǎn)N,使得△BCN的面積最大?若存在求出N點(diǎn)的坐標(biāo),及△BCN面積的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面材料:

已知點(diǎn)在數(shù)軸上分別表示有理數(shù)兩點(diǎn)之間的距離表示為

當(dāng)兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)為原點(diǎn),如圖1,

當(dāng)兩點(diǎn)都不在原點(diǎn)時(shí),

1)如圖2,點(diǎn)都在原點(diǎn)的右邊,則

2)如圖3,點(diǎn)都在原點(diǎn)的左邊,則

3)如圖4,點(diǎn)都在原點(diǎn)的兩邊,則

綜上,數(shù)軸上兩點(diǎn)的距離

回答下列問(wèn)題:

1)數(shù)軸上表示-25的兩點(diǎn)之間的距離是

2)數(shù)軸上表示-1的兩點(diǎn)之間的距離是,如果,那么 ;

3)拓展:若點(diǎn)表示的數(shù)為

①則當(dāng) 時(shí),的值相等.

②當(dāng)時(shí),整數(shù) 個(gè)

的最小值是

的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在中,,,邊上的任意一點(diǎn),作的延長(zhǎng)線于點(diǎn),連接、,于點(diǎn)

(1).求

(2)求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點(diǎn)D,過(guò)點(diǎn)DDEAB,于點(diǎn)E

1)求證:△ACD≌△AED;

2)若∠B=30°,CD=1,求BD的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,△ABC是等腰直角三角形,∠A90°,ABAC,D是斜邊BC的中點(diǎn),E,F分別是AB、AC邊上的點(diǎn),且DEDF,若BE15,CF8,求△AEF的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案