【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.

求證:(1)ABE≌△CDF;

(2)四邊形BFDE是平行四邊形.

【答案】證明:(1)四邊形ABCD是平行四邊形,∴∠A=C,AB=CD,

ABE和CDF中,AB=CD,A=C,AE=CF,

∴△ABE≌△CDF(SAS)。

(2)四邊形ABCD是平行四邊形,ADBC,AD=BC。

AE=CF,AD﹣AE=BC﹣CF,即DE=BF。

四邊形BFDE是平行四邊形。

解析平行四邊形的性質(zhì)和判定,全等三角形的判定。

(1)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形的對(duì)邊相等,對(duì)角相等的性質(zhì),即可證得A=C,AB=CD,又由AE=CF,利用SAS,即可判定ABE≌△CDF。

(2)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形對(duì)邊平行且相等,即可得ADBC,AD=BC,又由AE=CF,即可證得DE=BF。根據(jù)對(duì)邊平行且相等的四邊形是平行四邊形,即可證得四邊形BFDE是平行四邊形。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了推動(dòng)陽光體育運(yùn)動(dòng)的廣泛開展,引導(dǎo)學(xué)生走向操場(chǎng),走進(jìn)大自然,走到陽光,積極參加體育鍛煉,學(xué)校準(zhǔn)備購買一批運(yùn)動(dòng)鞋供學(xué)生借用,現(xiàn)從各年的隨機(jī)抽取了部分學(xué)生的鞋號(hào),繪制了統(tǒng)計(jì)圖A和圖B,請(qǐng)根據(jù)相關(guān)信息,解答下列問題:

1)本次隨機(jī)抽樣的學(xué)生數(shù)是多少?A值是多少?

2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)和中位數(shù)各是多少?

3)根據(jù)樣本數(shù)據(jù),若學(xué)校計(jì)劃購買200雙運(yùn)動(dòng)鞋,建議購買35號(hào)運(yùn)動(dòng)鞋多少雙?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,BD⊥AD,∠A=45°,E、F分別是AB,CD上的點(diǎn),且BE=DF,連接EF交BD于O.

(1)求證:BO=DO;

(2)若EF⊥AB,延長EF交AD的延長線于G,當(dāng)FG=1時(shí),求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= (x>0)的圖象交于A(m,6),B(3,n)兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,下列結(jié)論:①一次函數(shù)解析式為y=﹣2x+8;②AD=BC;③kx+b﹣ <0的解集為0<x<1或x>3;④△AOB的面積是8,其中正確結(jié)論的個(gè)數(shù)是( )

A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形OAB中,∠AOB=90°,半徑OA=2 ,將扇形OAB沿過點(diǎn)B的直線折疊,點(diǎn)O恰好落在 上的點(diǎn)D處,折痕交OA于點(diǎn)C,則陰影部分的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,真命題有(

①直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短;

②三角形的一個(gè)外角大于任何一個(gè)內(nèi)角;

③如果∠1和∠2是對(duì)頂角,那么;

④如果一條直線和兩條直線中的一條垂直,那么這條直線也和另一條垂直.

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,過點(diǎn)A引射線AH,交邊CD于點(diǎn)H(點(diǎn)H與點(diǎn)D不重合).通過翻折,使點(diǎn)B落在射線AH上的點(diǎn)G處,折痕AEBCE,延長EGCDF

(感知)(1)如圖①,當(dāng)點(diǎn)H與點(diǎn)C重合時(shí),猜想FGFD的數(shù)量關(guān)系,并說明理由.

(探究)(2)如圖②,當(dāng)點(diǎn)H為邊CD上任意一點(diǎn)時(shí),(1)中結(jié)論是否仍然成立?請(qǐng)說明理由.

(應(yīng)用)(3)在圖②中,當(dāng)DF=3,CE=5時(shí),直接利用探究的結(jié)論,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,點(diǎn)E,F(xiàn)分別是AB,BC邊的中點(diǎn),連接AF,CE交于點(diǎn)M,連接BM并延長交CD于點(diǎn)N,連接DE交AF于點(diǎn)P,則結(jié)論:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE= :3;⑤SEPM= S梯形ABCD , 正確的個(gè)數(shù)有( )

A.5個(gè)
B.4個(gè)
C.3個(gè)
D.2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 的對(duì)稱軸為直線 ,與 軸的一個(gè)交點(diǎn)坐標(biāo)為(-1,0),其部分圖象如圖所示,下列結(jié)論:

;② 方程 的兩個(gè)根是 ;③ ;④當(dāng) 時(shí), 的取值范圍是 ;⑤ 當(dāng) 時(shí), 增大而增大;其中結(jié)論正確有.

查看答案和解析>>

同步練習(xí)冊(cè)答案