2.已知不等式5-3x≤1的最小整數(shù)解是關(guān)于x的方程(a+9)x=4(x+1)的解,求a的值.

分析 解不等式求得不等式的解集,然后把最小的整數(shù)代入方程,解方程即可求得.

解答 解:解不等式5-3x≤1,得x≥$\frac{4}{3}$,
所以不等式的最小整數(shù)解是2.
把x=2代入方程(a+9)x=4(x+1)得,
(a+9)×2=4×(2+1),
解得a=-3.

點(diǎn)評(píng) 本題考查了一元一次不等式的整數(shù)解,解方程,關(guān)鍵是根據(jù)題意求得x的最小整數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在△ABC中,邊AB、AC的垂直平分線分別交BC于D、E.
(1)若BC=8,則△ADE周長是多少?
(2)若∠BAC=118°,則∠DAE的度數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

13.如圖,在△ABC中,∠BAC=90°,AB=AC,DA∥BC,tan∠DBA=$\frac{1}{2}$,若CD=2$\sqrt{17}$,則線段BC的長為,6$\sqrt{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.如圖是小明作線段AB的垂直平分線的作法及作圖痕跡,則四邊形ADBC一定是( 。
A.矩形B.菱形C.正方形D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.如圖1,已知拋物線y=$\frac{3}{8}$x2-$\frac{3}{4}$x-3與x軸交于A和B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D.
(1)求出點(diǎn)A,B,D的坐標(biāo);
(2)如圖1,若線段OB在x軸上移動(dòng),且點(diǎn)O,B移動(dòng)后的對(duì)應(yīng)點(diǎn)為O′,B′.首尾順次連接點(diǎn)O′、B′、D、C構(gòu)成四邊形O′B′DC,當(dāng)四邊形O′B′DC的周長有最小值時(shí),在第四象限找一點(diǎn)P,使得△PB′D的面積最大?并求出此時(shí)P點(diǎn)的坐標(biāo).
(3)如圖2,若點(diǎn)M是拋物線上一點(diǎn),點(diǎn)N在y軸上,連接CM、MN.當(dāng)△CMN是以MN為直角邊的等腰直角三角形時(shí),直接寫出點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在邊長為3的正方形ABCD中,點(diǎn)E是BC邊上的點(diǎn),BE=1,∠AEP=90°,且EP交正方形外角的平分線CP于點(diǎn)P,交邊CD于點(diǎn)F.
(1)求證:AE=EP;
(2)在AB邊上是否存在點(diǎn)M,使得四邊形DMEP是平行四邊形?若存在,請(qǐng)給予證明;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.如圖,已知AB∥CD,E是BC上一點(diǎn),∠1=∠A,∠2=∠D,求證:AE⊥DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.先化簡(1-$\frac{3}{a+2}$)÷$\frac{{a}^{2}-2a+1}{{a}^{2}-4}$,然后從-2≤a≤2的范圍內(nèi)選取一個(gè)合適的整數(shù)作為a的值代入求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

10.比較大小:-π<-3.14;2$\sqrt{3}$<3$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案