【題目】(1)已知的平方根是,的算術(shù)平方根是4,求的值;
(2)若與是同一個正數(shù)的平方根,求的值.
【答案】(1)9;(2) 或.
【解析】
(1)根據(jù)平方根的定義列式求出a的值,再根據(jù)算術(shù)平方根的定義列式求出b的值,然后代入代數(shù)式進(jìn)行計(jì)算即可得解;
(2)利用一個正數(shù)的平方根有兩個,它們互為相反數(shù)或這兩個數(shù)相等這兩種情況,即可求出a的值.
解:(1)∵2a-1的平方根是±3,
∴2a-1=9,∴a=5,
∵3a+b-1的算術(shù)平方根是4,
∴3a+b-1=16,
∴3×5+b-1=16,∴b=2,
∴a+2b=5+2×2=9;
(2)分類討論:
①當(dāng)與不相等時,由一個正數(shù)的平方根有兩個,它們互為相反數(shù)可知:
+=0
解得:
②當(dāng)與相等時
=
解得
故答案為:或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn)是邊上的一個動點(diǎn),過點(diǎn)作直線,設(shè)交的角平分線于點(diǎn),交的外角平分線于點(diǎn).
(1)求證:;
(2)當(dāng)點(diǎn)運(yùn)動到何處時,四邊形是矩形?并證明你的結(jié)論.
(3)當(dāng)點(diǎn)運(yùn)動到何處,且滿足什么條件時,四邊形是正方形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中,,,為上一點(diǎn),分別以,為折痕將兩個角(,)向內(nèi)折起,點(diǎn),恰好都落在邊的點(diǎn)處.若,,則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD中,P是AB邊上的一點(diǎn)(不與A,B重合),PE平分∠APC交射線AD于E,過E作EM⊥PE交直線CP于M,交直線CD于N.
(1)求證:CM=CN;
(2)若AB:BC=4:3,
①當(dāng) =時,E恰好是AD的中點(diǎn);
②如圖2,當(dāng)△PEM與△PBC相似時,求 E N E M 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形AOBC的頂點(diǎn)C的坐標(biāo)是(2,4),動點(diǎn)P從點(diǎn)A出發(fā),沿線段AO向終點(diǎn)O運(yùn)動,同時動點(diǎn)Q從點(diǎn)B出發(fā),沿線段BC向終點(diǎn)C運(yùn)動.點(diǎn)P、Q的運(yùn)動速度均為每秒1個單位,設(shè)運(yùn)動時間為t秒,過點(diǎn)P作PE⊥AO交AB于點(diǎn)E.
(1)求直線AB的解析式;
(2)在動點(diǎn)P、Q運(yùn)動的過程中,以B、Q、E為頂點(diǎn)的三角形是直角三角形,直按寫出t的值;
(3)設(shè)△PEQ的面積為S,求S與時間t的函數(shù)關(guān)系,并指出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算題計(jì)算:(﹣2017)0+|1﹣ |﹣2cos45°+(﹣ )﹣2;
(1)計(jì)算:(﹣2017)0+|1﹣ |﹣2cos45°+(﹣ )﹣2;
(2)解不等式組: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作BC的平行線與BE的延長線相交于點(diǎn)F,連接CF.
(1)求證:四邊形CFAD為平行四邊形.
(2)若∠BAC=90°,AB=4,BD=,請求出四邊形CFAD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形內(nèi)放置正方形甲、正方形乙、等腰直角三角形丙,它們的擺放位置如圖所示,已知,圖中陰影部分的面積之和為31,則矩形的周長為___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com