【題目】吸煙有害健康,為配合“戒煙”運動,有所初中學校組織同學們到社區(qū)開展了“你支持哪種戒煙方式”的隨機問卷調(diào)查,并將調(diào)查結(jié)果繪制成兩幅統(tǒng)計圖(待完善).根據(jù)統(tǒng)計圖解答下列問題:
(1)將條形統(tǒng)計圖補充完整.
(2)若這個社區(qū)約有1萬人,請你估計大約有多少人支持“警示戒煙”這種方式?
(3)為了讓更多市民增強“戒煙”意識,同學們在社區(qū)作了兩期“警示戒煙”宣傳.在(2)的條件下,若每期宣傳后,市民支持“警示戒煙”平均增長率為20%,則兩期宣傳后支持“警示戒煙”的市民約有多少人?
【答案】(1)圖見解析;(2)3500人;(3)5040人
【解析】
(1)由統(tǒng)計圖知,被調(diào)查人中支持替代品戒煙的人為50人,占被調(diào)查人中的%,所以可以求出調(diào)查的總?cè)藬?shù),根據(jù)得出的總調(diào)查人數(shù),既而可以求出支持“藥物戒煙”人數(shù)和支持“警示戒煙”人數(shù),根據(jù)以上計算得出的信息可以補全統(tǒng)計圖.
(2)由(1)可求被調(diào)查人數(shù)中,支持“警示戒煙”這種方式的人占總調(diào)查人數(shù)的百分比,社區(qū)共有1萬人,由樣本估計總體可求得,在這1萬人中支持“警示戒煙”的人數(shù).
(3)根據(jù)題意以及(2)的求解結(jié)果,不難算出經(jīng)過兩期宣傳后支持“警示戒煙”的市民人數(shù).
解:(1)調(diào)查總?cè)藬?shù)為(人).
∴支持“藥物戒煙”人數(shù)為(人).
∴支持“警示戒煙”人數(shù)為(人).
完整的統(tǒng)計圖如圖.
(2)由(1),支持“警示戒煙”的百分數(shù)為.
∴社區(qū)支持“警示戒煙”方式的人數(shù)約為
(人).
(4)兩期宣傳后支持“警示戒煙”的市民約有
(人)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=-2x+4與坐標軸分別交于C、B兩點,過點C作CD⊥x軸,點P是x軸下方直線CD上的一點,且△OCP與△OBC相似,求過點P的雙曲線解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是某品牌訂書機,其截面示意圖如圖2所示.訂書釘放置在軌槽CD內(nèi)的MD處,由連接彈簧的推動器MN推緊,連桿EP一端固定在壓柄CF上的點E處,另一端P在DM上移動.當點P與點M重合后,拉動壓柄CF會帶動推動器MN向點C移動.使用時,壓柄CF的端點F與出釘口D重合,紙張放置在底座AB的合適位置下壓完成裝訂(即點D與點H重合).已知CA⊥AB,CA=2cm,AH=12cm,CE=5cm,EP=6cm,MN=2cm.
(1)求軌槽CD的長(結(jié)果精確到0.1);
(2)裝入訂書釘需打開壓柄FC,拉動推動器MN向點C移動,當∠FCD=53°時,能否在ND處裝入一段長為2.5cm的訂書釘?(參考數(shù)據(jù):≈2.24,≈6.08,sin53°≈0.80,cos53°≈0.60)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AO⊥BC于點O,OE⊥AB于點E,以點O為圓心,OE為半徑作半圓,交AO于點F.
(1)求證:AC是⊙O的切線;
(2)若點F是OA的中點,OE=3,求圖中陰影部分的面積;
(3)在(2)的條件下,點P是BC邊上的動點,當PE+PF取最小值時,直接寫出BP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,是一款常見的海綿拖把,圖2是其平面示意圖,EH是拖把把手,F是把手的一個固定點,海綿安裝在兩片活動骨架PA,PB上,骨架的端點P只能在線段FH上移動,當海綿完全張開時,PA,PB分別與HMHN重合;當海綿閉合時,PA,PB與FH重合.已知直桿EH=120cm,FH=20cm.
(1)若∠APB=90°,求EP的長(結(jié)果保留根號)
(2)若∠APB=26°,求MA的長(結(jié)果保留小數(shù)點后一位)
(3)海綿從完全張開到閉合的過程中,直接寫出PA的中點Q運動的路徑長.(參考數(shù)據(jù):sin13°≈0.225,cos13°≈0.974,tan13°≈0.231,π取3.14)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實根.
(1)求實數(shù)k的取值范圍.
(2)若方程兩實根滿足|x1|+|x2|=x1·x2,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小軒從如圖所示的二次函數(shù)y=ax2+bx+c(a≠0)的圖象中,觀察得出了下面五條信息:
①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.
你認為其中正確信息的個數(shù)有
A.2個 B.3個 C.4個 D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2012年6月5日是“世界環(huán)境日”,南寧市某校舉行了“綠色家園”演講比賽,賽后整理參賽同學的成績,制作成直方圖(如圖).
(1)分數(shù)段在______范圍的人數(shù)最多;
(2)全校共有________人參加比賽;
(3)學校決定選派本次比賽成績最好的3人參加南寧市中學生環(huán)保演講決賽,并為參賽選手準備了紅、藍、白顏色的上衣各1件和2條白色、1條藍色的褲子.請用“列表法”或“樹形圖法”表示上衣和褲子搭配的所有可能出現(xiàn)的結(jié)果,并求出上衣和能搭配成同一種顏色的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形中,BC=3,動點從出發(fā),以每秒1個單位的速度,沿射線方向移動,作關(guān)于直線的對稱,設(shè)點的運動時間為
(1)若
①如圖2,當點B’落在AC上時,顯然△PCB’是直角三角形,求此時t的值
②是否存在異于圖2的時刻,使得△PCB’是直角三角形?若存在,請直接寫出所有符合題意的t的值?若不存在,請說明理由
(2)當P點不與C點重合時,若直線PB’與直線CD相交于點M,且當t<3時存在某一時刻有結(jié)論∠PAM=45°成立,試探究:對于t>3的任意時刻,結(jié)論∠PAM=45°是否總是成立?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com