【題目】折疊三角形紙片ABC,使點(diǎn)A落在BC邊上的點(diǎn)F,且折痕DEBC,若∠A=75°,C=60°,則∠BDF=____________________________

【答案】90°

【解析】分析: 根據(jù)三角形的內(nèi)角和定理求出∠B,再根據(jù)兩直線平行,同位角相等∠ADE,根據(jù)翻折變換的性質(zhì)可得∠EDF=∠ADE,然后根據(jù)平角的定義列式計(jì)算即可得解.

詳解: :∵∠A=75°,∠C=60°,

∴∠B=180°-∠A-∠C=180°-75°-60°=45°,

∵DE∥BC,

∴∠ADE=∠B=45°,

由翻折的性質(zhì)得,∠EDF=∠ADE=45°,

∴∠BDF=180°-45°×2=90°.

故答案為:90°.

點(diǎn)睛: 本題考查了三角形的內(nèi)角和定理,平行線的性質(zhì),翻折變換的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一個(gè)等腰Rt△ABC對(duì)折,使∠A與∠B重合,展開(kāi)后得折痕CD,再將∠A折疊,使C落在AB上的點(diǎn)F處,展開(kāi)后,折痕AE交CD于點(diǎn)P,連接PF、EF,下列結(jié)論:①tan∠CAE=﹣1;②圖中共有4對(duì)全等三角形;③若將△PEF沿PF翻折,則點(diǎn)E一定落在AB上;④PC=EC;⑤S四邊形DFEP=S△APF.正確的個(gè)數(shù)是( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,下列圖形都是由相同的正方形按一定的規(guī)律組成,其中:第(1)個(gè)圖形中的正方形有2個(gè),第(2)個(gè)圖形中的正方形有5個(gè),第(3)個(gè)圖形中的正方形有9個(gè),…,按此規(guī)律,則第7個(gè)圖形中的正方形的個(gè)數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,菱形ABCD的對(duì)角線AC,BD相交于O,點(diǎn)E,F(xiàn)分別是AD,DC的中點(diǎn),已知OE=,EF=3,求菱形ABCD的周長(zhǎng)和面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】筐白菜,以每筐千克為標(biāo)準(zhǔn),超過(guò)的千克數(shù)記作正數(shù)不足的千克數(shù)記作負(fù)數(shù),稱后的記錄如下:

回答下列問(wèn)題:

(1)這筐白菜中最接近千克的那筐白菜為  千克;

(2)若白菜每千克售價(jià),則出售這8筐白菜可賣多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB∥CD,直線EF分別交AB,CD于點(diǎn)E,F(xiàn),∠BEF的平分線與∠DFE的平分線相交于點(diǎn)P,試說(shuō)明△EPF為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABP是兩個(gè)全等的等邊三角形,且,有下列四個(gè)結(jié)論:①,,④四邊形ABCD是軸對(duì)稱圖形,其中正確的有

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,試探究其中∠1,∠2∠3,∠4之間的關(guān)系,并證明.

2)用(1)中的結(jié)論解決下列問(wèn)題:如圖2,AE、DE分別是四邊形ABCD的外角∠NAD、∠MDA的平分線,∠B+∠C=240°,求∠E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知DEBCBE平分∠ABC,∠C=65°,∠ABC=50°.

(1)求∠BED的度數(shù);

(2)判斷BEAC的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案