【題目】如圖1,線段BE上有一點(diǎn)C,以BC,CE為邊分別在BE的同側(cè)作等邊三角形ABC,DCE,連接AE,BD,分別交CD,CA于Q,P.
(1)找出圖中的所有全等三角形.
(2)找出一組相等的線段,并說明理由.
(3)如圖2,取AE的中點(diǎn)M、BD的中點(diǎn)N,連接MN,試判斷三角形CMN的形狀,并說明理由.
【答案】
(1)解:△BCD≌△ACE;△BPC≌△AQC;△DPC≌△EQC
(2)解:BD=AE.
理由:等邊三角形ABC、DCE中,∵∠ACB=∠ACD=∠DCE=60°,
∴∠BCD=∠ACE,
在△BCD和△ACE中, ,
∴△BCD≌△ACE(SAS),
∴BD=AE.
(3)解:等邊三角形.
理由:由△BCD≌△ACE,
∴∠1=∠2,BD=AE.
∵M(jìn)是AE的中點(diǎn)、N是BD的中點(diǎn),
∴DN=EM,又DC=CE.
在△DCN和△ECM中, ,
∴△DCN≌△ECM(SAS),
∴CN=CM,∠NCD=∠MCE,∠MCE+∠DCM=60°.
∴∠NCD+∠DCM=60°,即∠NCM=60°,
又∵CM=CN,
∴△CMN為等邊三角形
【解析】(1)先觀察圖形那些三角形是全等的,然后結(jié)合題中條件去推理;(2)由等邊三角形的性質(zhì)推出邊相等、角相等,由“SAS”推出全等(3)由第(1)問去等推出△DCN≌△ECM,再證∠NCM=60°即得證.
【考點(diǎn)精析】關(guān)于本題考查的等邊三角形的性質(zhì),需要了解等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°.
(1)用尺規(guī)在AC邊上求作點(diǎn)D,使AD=BD;(保留痕跡,不寫作法)
(2)若(1)中所得BD平分∠ABC,則∠A= . (直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.
(1)如圖1,若AB∥CD,點(diǎn)P在AB、CD外部,則有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B﹣∠D.將點(diǎn)P移到AB、CD內(nèi)部,如圖2,以上結(jié)論是否成立?若成立,說明理由;若不成立,則∠BPD、∠B、∠D之間有何數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論;
(2)在如圖2中,將直線AB繞點(diǎn)B逆時(shí)針方向旋轉(zhuǎn)一定角度交直線CD于點(diǎn)Q,如圖3,則∠BPD、∠B、∠D、∠BQD之間有何數(shù)量關(guān)系?(不需證明);
(3)根據(jù)(2)的結(jié)論求如圖4中∠A+∠B+∠C+∠D+∠E的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是邊AC上一點(diǎn)(不包括端點(diǎn)A、C),過點(diǎn)P作PE⊥BC于點(diǎn)E,過點(diǎn)E作EF∥AC,交AB于點(diǎn)F.設(shè)PC=x,PE=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)是否存在點(diǎn)P使△PEF是Rt△?若存在,求此時(shí)的x的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,BC=8,∠BAC=110°,AB的垂直平分線交BC于點(diǎn)D,AC的垂直平分線交BC于點(diǎn)E.則△ADE的周長為;∠DAE的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一條筆直的東西向海岸線l上有一長為1.5km的碼頭MN和燈塔C,燈塔C距碼頭的東端N有20km.以輪船以36km/h的速度航行,上午10:00在A處測得燈塔C位于輪船的北偏西30°方向,上午10:40在B處測得燈塔C位于輪船的北偏東60°方向,且與燈塔C相距12km.
(1)若輪船照此速度與航向航向,何時(shí)到達(dá)海岸線?
(2)若輪船不改變航向,該輪船能否?吭诖a頭?請(qǐng)說明理由.(參考數(shù)據(jù):≈1.4,≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列判斷中正確的是( )
A.對(duì)角線互相垂直的四邊形是菱形
B.三個(gè)角相等的四邊形是矩形
C.對(duì)角線相等的平行四邊形是正方形
D.對(duì)角線互相平分垂直且相等的四邊形是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校將周五上午大課間活動(dòng)項(xiàng)目定為跳繩活動(dòng),為此學(xué)校準(zhǔn)備購置長、短兩種跳繩若干.已知長跳繩的單價(jià)比短跳繩單價(jià)的三倍少4元,且購買2條長跳繩與購買5條短跳繩的費(fèi)用相同.
(1)兩種跳繩的單價(jià)各是多少元?
(2)若學(xué)校準(zhǔn)備用不超過1950元的現(xiàn)金購買190條長、短跳繩,且短跳繩的條數(shù)不超過長跳繩的5倍,問學(xué)校有幾種購買方案可供選擇?并寫出這幾種方案.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com