【題目】如圖,折疊邊長(zhǎng)為a的正方形ABCD,使點(diǎn)C落在邊AB上的點(diǎn)M處(不與點(diǎn)A,B重合),點(diǎn)D落在點(diǎn)N處,折痕EF分別與邊BC、AD交于點(diǎn)E、F,MN與邊AD交于點(diǎn)G.證明:
(1)△AGM∽△BME;
(2)若M為AB中點(diǎn),則==;
(3)△AGM的周長(zhǎng)為2a.
【答案】見解析
【解析】
試題分析:(1)根據(jù)正方形的性質(zhì)和折疊的性質(zhì)得出∠A=∠B,∠AGM=∠BME,再利用相似三角形的判定證明即可;
(2)設(shè)BE=x,利用勾股定理得出x的值,再利用相似三角形的性質(zhì)證明即可;
(3)設(shè)BM=x,AM=a﹣x,利用勾股定理和相似三角形的性質(zhì)證明即可.
證明:(1)∵四邊形ABCD是正方形,
∴∠A=∠B=∠C=90°,
∴∠AMG+∠AGM=90°,
∵EF為折痕,
∴∠GME=∠C=90°,
∴∠AMG+∠BME=90°,
∴∠AGM=∠BME,
在△AGM與△BME中,
∵∠A=∠B,∠AGM=∠BME,
∴△AGM∽△BME;
(2)∵M為AB中點(diǎn),
∴BM=AM=,
設(shè)BE=x,則ME=CE=a﹣x,
在Rt△BME中,∠B=90°,
∴BM2+BE2=ME2,即()2+x2=(a﹣x)2,
∴x=a,
∴BE=a,ME=a,
由(1)知,△AGM∽△BME,
∴===,
∴AG=BM=a,GM=ME=a,
∴==;
(3)設(shè)BM=x,則AM=a﹣x,ME=CE=a﹣BE,
在Rt△BME中,∠B=90°,
∴BM2+BE2=ME2,即x2+BE2=(a﹣BE)2,
解得:BE=﹣,
由(1)知,△AGM∽△BME,
∴==,
∵C△BME=BM+BE+ME=BM+BE+CE=BM+BC=a+x,
∴C△AGM=C△BME=(a+x)=2a.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣2x﹣m=0有兩個(gè)實(shí)數(shù)根.
(1)求實(shí)數(shù)m的取值范圍;
(2)若方程的兩個(gè)實(shí)數(shù)根為x1、x2,且x1x2=2m2﹣1,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=x+4的圖象與二次函數(shù)y=ax(x﹣2)的圖象相交于A(﹣1,b)和B,點(diǎn)P是線段AB上的動(dòng)點(diǎn)(不與A、B重合),過點(diǎn)P作PC⊥x軸,與二次函數(shù)y=ax(x﹣2)的圖象交于點(diǎn)C.
(1)求a、b的值
(2)求線段PC長(zhǎng)的最大值;
(3)若△PAC為直角三角形,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰三角形的兩邊長(zhǎng)分別為3cm和7cm,則周長(zhǎng)為( )
A.13 cm B.17 cm C.13 cm或17 cm D.11 cm或17 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的袋子中,裝有三個(gè)分別標(biāo)記為“1”、“2”、“3”的球,這三個(gè)球除了標(biāo)記不同外,其余均相同.?dāng)噭蚝,從中摸出一個(gè)球,記錄球上的標(biāo)記后放回袋中并攪勻,再?gòu)闹忻鲆粋(gè)球,再次記錄球上的標(biāo)記.
(1)請(qǐng)列出上述實(shí)驗(yàn)中所記錄球上標(biāo)記的所有可能的結(jié)果;
(2)求兩次記錄球上標(biāo)記均為“1”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小芳媽媽要給一幅長(zhǎng)為60cm,寬為40cm的矩形十字繡的四周裝裱一條寬度相同的金色邊框制成一幅矩形掛圖,使整幅掛圖面積是3400cm2.設(shè)金色邊框的寬度為x cm,則x滿足的方程是( )
A.x2+50x﹣1400=0
B.x2﹣65x﹣250=0
C.x2﹣30x﹣1400=0
D.x2+50x﹣250=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人共同計(jì)算一道整式乘法:(2x+a)(3x+b),由于甲抄錯(cuò)了第一個(gè)多項(xiàng)式中a的符號(hào),得到的結(jié)果為6x2+11x﹣10;由于乙漏抄了第二個(gè)多項(xiàng)式中的x的系數(shù),得到的結(jié)果為2x2﹣9x+10.請(qǐng)你計(jì)算出a、b的值各是多少,并寫出這道整式乘法的正確結(jié)果.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com