精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在Rt△ABC中,∠C=90°,點O在AB上,經過點A的⊙O與BC相切于點D,與AC,AB分別相交于點E,F,連接AD與EF相交于點G.

(1)求證:AD平分∠CAB;
(2)若OH⊥AD于點H,FH平分∠AFE,DG=1.
①試判斷DF與DH的數量關系,并說明理由;
②求⊙O的半徑.

【答案】
(1)

證明:如圖,連接OD,

∵⊙O與BC相切于點D,

∴OD⊥BC,

∵∠C=90°,

∴OD∥AC,

∴∠CAD=∠ODA,

∵OA=OD,

∴∠OAD=∠ODA,

∴∠CAD=∠BAD,

∴AD平分∠CAB


(2)

解:①DF=DH,理由如下:

∵FH平分∠AFE,

∴∠AFH=∠EFH,

又∠DFG=∠EAD=∠HAF,

∴∠DFG=∠EAD=∠HAF,

∴∠DFG+∠GFH=∠HAF+∠HFA,

即∠DFH=∠DHF,

∴DF=DH.

②設HG=x,則DH=DF=1+x,

∵OH⊥AD,

∴AD=2DH=2(1+x),

∵∠DFG=∠DAF,∠FDG=∠FDG,

∴△DFG∽△DAF,

,

,

∴x=1,

∵DF=2,AD=4,

∵AF為直徑,

∴∠ADF=90°,

∴AF= =

∴⊙O的半徑為


【解析】(1)連接OD.先證明OD∥AC,得到∠CAD=∠ODA,再根據OA=OD,得到∠OAD=∠ODA,進而得到∠CAD=∠BAD,即可解答.(2)①DF=DH,利用FH平分∠AFE,得到∠AFH=∠EFH,再證明∠DFH=∠DHF,即可得到DF=DH.②設HG=x,則DH=DF=1+x,證明△DFG∽△DAF,得到 ,即 ,求出x=1,再根據勾股定理求出AF,即可解答.本題考查了切線的性質,相似三角形的判定和性質,本題涉及的知識點:兩直線平行,等腰三角形的判定、三角形相似.
【考點精析】通過靈活運用角平分線的性質定理和垂徑定理,掌握定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧即可以解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】計算下列各題:(1)_______;(2)________;

(3)_______;(4)_______;

(5)________;(6)________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將矩形ABCD沿EF折疊C落在A,D落在.AB=3,BC=9,則折痕EF的長為()

A. B. 4 C. 5 D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°.
(1)請用直尺和圓規(guī)按下列步驟作圖,保留作圖痕跡:
①作∠ACB的平分線,交斜邊AB于點D;
②過點D作AC的垂線,垂足為點E.
(2)在(1)作出的圖形中,若CB=4,CA=6,則DE=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的一元二次方程x2﹣2x+m﹣1=0有兩個實數根x1 , x2
(1)求m的取值范圍;
(2)當x12+x22=6x1x2時,求m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知如圖, C 是線段 AB 上一點, 5BC=2AB,D AB 的中點,E CB 的中點,(1) DE=6,求 AB 的長;(2)求 AD:AC.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】由于持續(xù)高溫和連日無雨,某水庫的蓄水量隨時間的增加而減少,已知原有蓄水量y1(萬m3)與干旱持續(xù)時間x(天)的關系如圖中線段l1所示,針對這種干旱情況,從第20天開始向水庫注水,注水量y2(萬m3)與時間x(天)的關系如圖中線段l2所示(不考慮其它因素).

(1)求原有蓄水量y1(萬m3)與時間x(天)的函數關系式,并求當x=20時的水庫總蓄水量.

(2)求當0≤x≤60時,水庫的總蓄水量y(萬m3)與時間x(天)的函數關系式(注明x的范圍),若總蓄水量不多于900m3為嚴重干旱,直接寫出發(fā)生嚴重干旱時x的范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線AB經過⊙O上的點C,直線AO與⊙O交于點E和點D,OB與⊙O交于點F,連接DF、DC.已知OA=OB,CA=CB,DE=10,DF=6.
(1)求證:①直線AB是⊙O的切線;②∠FDC=∠EDC;
(2)求CD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了加強學生的交通安全意識,某中學和交警大隊聯合舉行了我當一日小交警活動,星期天選派部分學生到交通路口值勤,協助交通警察維護交通秩序.若每一個路口安排4人,那么還剩下78人;若每個路口安排8人,那么最后一個路口不足8人,但不少于4人.求這個中學共選派值勤學生多少人?共有多少個交通路口安排值勤?

查看答案和解析>>

同步練習冊答案