【題目】閱讀理解:在平面直角坐標(biāo)系xOy中,對于任意兩點P1(x1,y1)與P2(x2,y2)的“非常距離”,給出如下定義:
若|x1﹣x2|≥|y1﹣y2|,則點P1與點P2的“非常距離”為|x1﹣x2|;
若|x1﹣x2|<|y1﹣y2|,則點P1與點P2的“非常距離”為|y1﹣y2|.
例如:點P1(1,1),點P2(2,3),因為|1﹣2|<|1﹣3|,所以點P1與點P2的“非常距離”為|1﹣3|=2,也就是圖1中線段P1Q與線段P2Q長度的較大值(點Q為垂直于y軸的直線P1Q與垂直于x軸的直線P2Q的交點).
(1)已知點A(-,0),B為y軸上的一個動點.
①若點B(0,3),則點A與點B的“非常距離”為______;
②若點A與點B的“非常距離”為2,則點B的坐標(biāo)為_______;
③直接寫出點A與點B的“非常距離”的最小值為_______;
(2)已知點D(0,1),點C是直線y=﹣x+3上的一個動點,如圖2,求點C與點D“非常距離”的最小值及相應(yīng)的點C的坐標(biāo).
【答案】(1)①3;②(0,2)或(0,﹣2);③;(2)(,).
【解析】
(1)根據(jù)“非常距離”的定義分別計算|x1﹣x2|與|y1﹣y2|,即可得答案;②根據(jù)點B位于y軸上,設(shè)點B的坐標(biāo)為(0,y).由“非常距離”的定義求得y的值即可;③分別討論-≤y≤時和y<-或y>時A與B的“非常距離”即可得答案;(2)設(shè)點C的坐標(biāo)為(x0,-x0+3).根據(jù)材料“若,則點P1與點P2的“非常距離”為|x1﹣x2|”知,C、D兩點的“非常距離”的最小值為|x1﹣x2|=|y1﹣y2|,據(jù)此可以求得點C的坐標(biāo);
(1)①,|0﹣3|=3,
∵<3,
∴點A與點B的“非常距離”為3,
②∵B為y軸上的一個動點,
∴設(shè)點B的坐標(biāo)為(0,y).
∵≠2,
∴|0﹣y|=2.
解得,y=2或y=﹣2;
∴點B的坐標(biāo)是(0,2)或(0,﹣2),
③設(shè)點B坐標(biāo)為(0,y),
當(dāng)-≤y≤時,|0﹣y|≤,
∴“非常距離”為,
當(dāng)y<-或y>時,|0﹣y|>
∴“非常距離”為|y|>,
∴點A與點B的“非常距離”的最小值為,
故答案為:3,(0,2)或(0,﹣2),
(2)如圖2,取點C與點D的“非常距離”的最小值時,
根據(jù)運算定義“若|x1﹣x2|≥|y1﹣y2|,則點P1與點P2的‘非常距離’為|x1﹣x2|”解答,
此時|x1﹣x2|=|y1﹣y2|.即AC=AD,
∵C是直線y=-x+3上的一個動點,點D的坐標(biāo)是(0,1),
∴設(shè)點C的坐標(biāo)為(x0,-x0+3),則
∴或x0=6,
∴或|x0﹣0|=6.
∵<6,
∴點C與點D的“非常距離”的最小值為,
∴-×+3=,
∴C(,),
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列問題,列出關(guān)于的方程,并將其化成一元二次方程的一般形式.
(1)4個完全相同的正方形的面積之和是25,求正方形的邊長.
(2)一個矩形的長比寬多2,面積是100,求矩形的長.
(3)一個直角三角形的斜邊長為10,兩條直角邊相差2,求較長的直角邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,過點D向AB,AC兩邊作垂線,垂足分別為E,F(xiàn),那么下列結(jié)論中不一定正確的是( )
A. BD=CD B. DE=DF C. AE=AF D. ∠ADE=∠ADF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為測量被荷花池相隔的兩樹、的距離,數(shù)學(xué)活動小組設(shè)計了如圖所示的測量方案:在的垂線上取兩點、,再定出的垂線,使、、在一條直線上.其中三位同學(xué)分別測量出了三組數(shù)據(jù):
、;
、;
、、.
能根據(jù)所測數(shù)據(jù),求得、兩樹距離的是( )
A. (1) B. (1),(2) C. (2),(3) D. (1),(3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=2,BC=1,運點P從點B出發(fā),沿路線BCD作勻速運動,那么△ABP的面積與點P運動的路程之間的函數(shù)圖象大致是( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點在邊上,于點.
若,,求的長;
設(shè)點在線段上,點在射線上,以,,為頂點的三角形與有一個銳角相等,交于點.問:線段可能是的高線還是中線?或兩者都有可能?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖鋼架中,∠AOB=10°,要使鋼架更加牢固,需在其內(nèi)部添加一些鋼管:EF,FG,GH…,且OE=EF=FG=GH…,在OA,OB 足夠長的情況下,最多能添加這樣的鋼管的根數(shù)為 ( ).
A.7B.8C.9D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】動畫片《小豬佩奇》分靡全球,受到孩子們的喜愛.現(xiàn)有4張《小豬佩奇》角色卡片,分別是A佩奇,B喬治,C佩奇媽媽,D佩奇爸爸(四張卡片除字母和內(nèi)容外,其余完全相同).姐弟兩人做游戲,他們將這四張卡片混在一起,背面朝上放好.
(1)姐姐從中隨機(jī)抽取一張卡片,恰好抽到A佩奇的概率為 ;
(2)若兩人分別隨機(jī)抽取一張卡片(不放回),請用列表或畫樹狀圖的分方法求出恰好姐姐抽到A佩奇弟弟抽到B喬治的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為配合“一帶一路”國家倡議,某鐵路貨運集裝箱物流園區(qū)正式啟動了2期擴(kuò)建工程一項地基基礎(chǔ)加固處理工程由2、8兩個工程公司承擔(dān)建設(shè),己知2工程公司單獨建設(shè)完成此項工程需要180天工程公司單獨施工天后,工程公司參與合作,兩工程公司又共同施工天后完成了此項工程.
(1)求工程公司單獨建設(shè)完成此項工程需要多少天?
(2)由于受工程建設(shè)工期的限制,物流園區(qū)管委會決定將此項工程劃包成兩部分,要求兩工程公司同時開工,工程公司建設(shè)其中一部分用了天完成,工程公司建設(shè)另一部分用了天完成,其中,均為正整數(shù),且,,求、兩個工程公司各施工建設(shè)了多少天?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com