如果拋物線y=
12
x2-mx+5m2與x軸有交點,則m=
 
分析:拋物線y=
1
2
x2-mx+5m2與x軸有交點,利用△解答即可.
解答:解:∵拋物線y=
1
2
x2-mx+5m2與x軸有交點,
∴b2-4ac=(-m)2-4×
1
2
×5m2=-9m2≥0.
∵m2為非負數(shù),
∴-9m2一定為非正數(shù).
∴只有m=0時拋物線y=
1
2
x2-mx+5m2與x軸才有交點.
點評:考查二次函數(shù)y=ax2+bx+c的圖象與x軸交點的個數(shù)的判斷.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,A(3,a)是雙曲線y=
12
x
上的點,O是原點,延長線段AO交雙曲線于另一點B,又過B點作BK⊥x軸于K.
精英家教網(wǎng)
(1)試求a的值與點B坐標;
(2)在直角坐標系中,先使線段AB在x軸的正方向上平移6個單位,得線段A1B1,再依次在與y軸平行的方向上進行第二次平移,得線段A2B2,且可知兩次平移中線段AB先后滑過的面積相等(即?AA1B1B與?A1A2B2B1的面積相等).求出滿足條件的點A2的坐標,并說明△AA1A2與△OBK是否相似的理由;
(3)設(shè)線段AB中點為M,又如果使線段AB與雙曲線一起移動,且AB在平移時,M點始終在拋物線y=
1
6
(x-6)2-6上,試判斷線段AB在平移的過程中,動點A所在的函數(shù)圖象的解析式;(無需過程,直接寫出結(jié)果.)
(4)試探究:在(3)基礎(chǔ)上,如果線段AB按如圖2所示方向滑過的面積為24個平方單位,且M點始終在直線x=6的左側(cè),試求此時線段AB所在直線與x軸交點的坐標,以及M點的橫坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知直線y=-
1
2
x與拋物線y=-
1
4
x2+6交于A,B兩點.
(1)求A,B兩點的坐標;
(2)求線段AB的垂直平分線的解析式;
(3)如圖2,取與線段AB等長的一根橡皮筋,端點分別固定在A,B兩處.用鉛筆拉著這根橡皮筋使筆尖P在直線AB上方的拋物線上移動,動點P將與A,B構(gòu)成無數(shù)個三角形,這些三角形中是否存在一個面積最大的三角形?如果存在,求出最大面積,并指出此時P點的坐標;如果不存在,請簡要說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知點A(a,y1)、B(2a,y2)、C(3a,y3)都在拋物線y=5x2+12x上.
(1)求拋物線與x軸的交點坐標;
(2)當(dāng)a=1時,求△ABC的面積;
(3)是否存在含有y1,y2,y3,且與a無關(guān)的等式?如果存在,試給出一個,并加以證明;如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線l1:y=-x+3與直線l2:y=
12
x-3
的圖象交于A點,l1與坐精英家教網(wǎng)標軸分別交于B,C兩點,l2與坐標軸分別交于D,E兩點.
(1)求點A的坐標,并求出經(jīng)過A,C,D三點的拋物線函數(shù)解析式;
(2)題(1)拋物線上的點的橫坐標不動,縱坐標擴大一倍后,得到新的拋物線,請寫出這個新的拋物線的函數(shù)解析式,判斷這個拋物線經(jīng)過平移,軸對稱這兩種變換后能否經(jīng)過A,B,E三點;如果可以,說出變換的過程;如果不可以,請說明理由.
(3)在題(1)中的拋物線頂點上方的對稱軸上有一動點P,在對稱軸右側(cè)的拋物線上有一動點Q,問是否存在這樣的動點P,Q,使△APQ與△ABD相似?如存在請求出動點Q的坐標,并直接寫出AP的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黃埔區(qū)一模)已知拋物線L:y=x2-(k-2)x+(k+1)2
(1)證明:不論k取何值,拋物線L的頂點C總在拋物線y=3x2+12x+9上;
(2)已知-4<k<0時,拋物線L和x軸有兩個不同的交點A、B,求A、B間距取得最大值時k的值;
(3)在(2)A、B間距取得最大值條件下(點A在點B的右側(cè)),直線y=ax+b是經(jīng)過點A,且與拋物線L相交于點D的直線.問是否存在點D,使△ABD為等邊三角形?如果存在,請寫出此時直線AD的解析式;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案