【題目】實驗室里,水平桌面上有甲、乙、丙三個高都為10cm圓柱形容器(甲、丙的底面積相同),用兩個相同的管子在容器的6cm高度處連通(即管子底離容器底6cm,管子的體積忽略不計).現(xiàn)三個容器中,只有甲中有水,水位高2cm,如圖①所示.若每分鐘同時向乙、丙容器中注入相同量的水,到三個容器都注滿水停止,乙、丙容器中的水位hcm)與注水時間tmin)的圖象如圖②所示.若乙比甲的水位高2cm時,注水時間m分鐘,則m的值為( 。

A.35B.46C.3D.59

【答案】C

【解析】

確定、的值,再分乙容器的水位達到時、甲容器的水位達到時兩種情況,分別求解.

解:2分鐘時,丙的水量達到6cm,而此時乙的水量為2cm,故乙、丙兩容器的底面積之比為31,

∵乙、丙兩容器的底面積之比為31,丙容器注入2分鐘到達6cm,

∴乙容器的水位達到6cm所需時間為:a2+24min),

b=(102+10×3+10÷68min).

①當2≤x≤4時,設(shè)乙容器水位高度h與時間t的函數(shù)關(guān)系式為hkt+bk≠0),

∵圖象經(jīng)過(2,2)、(4,6)兩點,則,解得:,

h2t22≤x≤4).

h4時,則2t24,解得t3;

②設(shè)t分鐘后,甲容器水位為4cm,根據(jù)題意得:2+6t4)=4,

解得:t

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋子中裝有分別標注著漢字“海、“棠”、“園”的三個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.

1)若從中任取一球,球上的漢字恰好是“園”的概率是

2)若從袋中任取一球,記下漢字后放回袋中,然后再從中任取一球,再次記下球上的漢字,求兩次的漢字恰好組成海棠這個詞的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,每個小方格都是邊長為1個單位長度的正方形,△ABC和△A1B1C1在平面直角坐標系中位置如圖所示.

1)△ABC與△A1B1C1關(guān)于某條直線m對稱,畫出對稱軸m.

2)畫出△A1B1C1繞原點O順時針旋轉(zhuǎn)90°所得的△A2B2C2.此時點A2的坐標為________

求出點A1旋轉(zhuǎn)到點A2的路徑長.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一工廠生產(chǎn)某種零件,該廠為了鼓勵銷售代理訂貨,提供了如下信息:

①每個零件的成本價為40元;②若一次訂購該零件100個以內(nèi),出廠單價為60元,若訂購量超過100個時,每多訂1個,訂購的全部零件的出廠單價就降低0.02元;③一次性訂購最多a().根據(jù)以上信息,解答下列問題:

(1)a=600時,設(shè)一次訂購量為x個,一次性訂購實際出廠單價為P元,求P關(guān)于x的函數(shù)表達式;

(2)a設(shè)定為多少時,一次性訂購a件該工廠獲得的利潤最大?并求此時成出廠單價.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點D.

(1)求證:BE=CF.

(2)當四邊形ACDE為菱形時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織全校1200名學(xué)生進行經(jīng)典詩詞誦讀活動,并在活動之后舉辦經(jīng)典詩詞大賽,為了解本次系列活動的持續(xù)效果,學(xué)校團委在活動啟動之初,隨機抽取40名學(xué)生調(diào)查“一周詩詞誦背數(shù)量”,根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計圖如圖所示.

大賽結(jié)束后一個月,再次抽查這部分學(xué)生“一周詩詞誦背數(shù)量”,繪制成統(tǒng)計表如下:

一周詩詞誦背數(shù)量

3

4

5

6

7

8

人數(shù)

1

3

5

6

10

15

請根據(jù)調(diào)查的信息

1)估計大賽后一個月該校學(xué)生一周詩詞誦背6首(含6首)以上的人數(shù).

2)選擇適當?shù)慕y(tǒng)計量,至少從兩個不同的角度分析兩次調(diào)查的相關(guān)數(shù)據(jù),評價該校經(jīng)典詩詞誦背系列活動的效果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC是等邊三角形,點DF分別在線段BC、AB上,∠EFB=60°,DC=EF

1)求證:四邊形EFCD是平行四邊形;

2)若BF=EF,求證:AE=AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是函數(shù)上兩點,為一動點,作軸,軸,下列說法正確的是( )

;③若,則平分④若,則

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某小區(qū)有甲、乙兩座樓房,樓間距BC50米,在乙樓頂部A點測得甲樓頂部D點的仰角為37°,在乙樓底部B點測得甲樓頂部D點的仰角為60°,則甲、乙兩樓的高度分別為多少?(結(jié)果精確到1米,sin37°≈0.60,cos37°≈0.80tan37°≈0.75,≈1.73)

查看答案和解析>>

同步練習(xí)冊答案