如圖,直線分別與兩坐標(biāo)軸交于A,B兩點(diǎn),點(diǎn)C從A點(diǎn)出發(fā)沿射線BA方向移動(dòng),速度為每秒1個(gè)單位長(zhǎng)度.以C為頂點(diǎn)作等邊△CDE,其中點(diǎn)D和點(diǎn)E都在x軸上.半徑為的⊙M與x軸、直線AB相切于點(diǎn)G、F.
(1)直線AB與x軸所夾的角∠ABO= °;
(2)求當(dāng)點(diǎn)C移動(dòng)多少秒時(shí),等邊△CDE的邊CE與⊙M相切?
(1)30;(2)4或.
【解析】
試題分析:(1)根據(jù)直線解析式求出OA、OB的長(zhǎng)度,再由∠ABO的正切值,可求出∠AOB的度數(shù):直線AB的解析式為,令x=0,則y=1,令y=0,則,∵,∴∠ABO=30°;(2)設(shè)點(diǎn)C移動(dòng)t秒后與⊙M相切,分兩種情況討論,①當(dāng)CE在⊙M左側(cè)相切于點(diǎn)H;②當(dāng)CE在⊙M右側(cè)相切于點(diǎn)H,用含t的式子表示出CE,建立方程,解出即可得出答案.
試題解析:(1)30;
(2)設(shè)點(diǎn)C移動(dòng)t秒后與⊙M相切,
①當(dāng)CE在⊙M左側(cè)相切于點(diǎn)H,如圖(1),連接MF、MG、MH,
∵AB、CE、BO均為⊙M的切線,∴MF⊥AB,MH⊥CE,MG⊥BO.
∵∠ABO=30°,△CDE是等邊三角形,∴∠BCE=90°. ∴四邊形CHMF為矩形.
∵M(jìn)F=MH,∴四邊形CHMF為正方形. ∴CH=MH=.
∵EH、EG為⊙M的切線,∠CED=60°,∴∠HEM=60°. ∴.
∵,∴,解得t=4.
②當(dāng)CE在⊙M右側(cè)相切于點(diǎn)H(如圖(2)),
由①證得:CH=MH=.
∵∠HEM=30°,∴.
∴,解得,t=.
考點(diǎn):1.圓的綜合題;2.動(dòng)點(diǎn)問題;3.銳角三角函數(shù)定義;4.特殊角的三角函數(shù)值;5.切線的性質(zhì);6. 等邊三角形的性質(zhì);7. 正方形的判定和性質(zhì);8.分類思想的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
|
|
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
2 |
2 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:044
如圖,在直角坐標(biāo)系中,O是原點(diǎn),A、B、C三點(diǎn)的坐標(biāo)分別為A(18,0),B(18,6),C(8,6),四邊形OABC是梯形,點(diǎn)P、Q同時(shí)從原點(diǎn)出發(fā),分別坐勻速運(yùn)動(dòng),其中點(diǎn)P沿OA向終點(diǎn)A運(yùn)動(dòng),速度為每秒1個(gè)單位,點(diǎn)Q沿OC、CB向終點(diǎn)B運(yùn)動(dòng),當(dāng)這兩點(diǎn)有一點(diǎn)到達(dá)自己的終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng)。
⑴ 求出直線OC的解析式及經(jīng)過O、A、C三點(diǎn)的拋物線的解析式。
⑵ 試在⑴中的拋物線上找一點(diǎn)D,使得以O、A、D為頂點(diǎn)的三角形與△AOC全等,請(qǐng)直接寫出點(diǎn)D的坐標(biāo)。
⑶ 設(shè)從出發(fā)起,運(yùn)動(dòng)了t秒。如果點(diǎn)Q的速度為每秒2個(gè)單位,試寫出點(diǎn)Q的坐標(biāo),并寫出此時(shí)t的取值范圍。
⑷ 設(shè)從出發(fā)起,運(yùn)動(dòng)了t秒。當(dāng)P、Q兩點(diǎn)運(yùn)動(dòng)的路程之和恰好等于梯形OABC的周長(zhǎng)的一半,這時(shí),直線PQ能否把梯形的面積也分成相等的兩部分,如有可能,請(qǐng)求出t的值;如不可能,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年山東省濟(jì)南市歷下區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com