【題目】已知關于的二次函數(shù)

(1)時,求該函數(shù)圖像的頂點坐標.

(2)在(1)條件下,為該函數(shù)圖像上的一點,若關于原點的對稱點也落在該函數(shù)圖像上,求的值

(3)當函數(shù)的圖像經(jīng)過點(1,0)時,若是該函數(shù)圖像上的兩點,試比較的大小.

【答案】(1) ,頂點坐標(1,-4);(2)m=1;(3)①a>0時,y2>y1 ,②a<0時,y1>y2 .

【解析】

試題

(1)把a=2,b=4代入并配方,即可求出此時二次函數(shù)圖象的頂點坐標;

(2)由題意把(m,t)和(-m,-t)代入(1)中所得函數(shù)的解析式,解方程組即可求得m的值;

(3)把點(1,0)代入可得b=a-2,由此可得拋物線的對稱軸為直線:,再分a>0a<0兩種情況分別討論即可y1y2的大小關系了.

試題解析

(1)把a=2,b=4代入得:

此時二次函數(shù)的圖象的頂點坐標為(1,-4);

(2)由題意,把(m,t)和(-m,-t)代入得:

①,②,

①+②得:,解得:;

(3)把點(1,0)代入a-b-2=0,

b=a-2,

此時該二次函數(shù)圖象的對稱軸為直線:,

a>0時,,

∵此時,且拋物線開口向上,

,B距離對稱軸更遠,

∴y1<y2;

a<0時,,,

∵此時,且拋物線開口向下,

,B距離對稱軸更遠,

∴y1>y2;

綜上所述,a>0,y1<y2;a<0時,y1>y2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小李以每千克0.8元的價格從批發(fā)市場購進若干千克西瓜到市場去銷售,在銷售了部分西瓜之后,余下的每千克降價0.4元,全部售完;銷售金額與賣西瓜千克數(shù)之間的關系如圖所示,那么小李賺了_________..

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AD平分∠BACDGBC且平分BC,DEABEDFACF

1)說明BE=CF的理由;

2)如果AB=5,AC=3,求AE、BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 6個相同的小正方體擺成如圖的幾何體.

1)畫出該幾何體的主視圖、左視圖、俯視圖;

2)如果每個小正方體棱長為,則該幾何體的表面積是

3)如果在這個幾何體上再添加一些相同的小正方體,并并保持左視圖和俯視圖不變,那么最多可以再 添加 個小正方體.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形中,=4, =8,點邊上一點,且,點是邊上一動點,連接,,則下列結論:① ;②當時,平分 ; 周長的最小值為15 ;④當時,平分.其中正確的個數(shù)有(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtAOB中,直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,將AOB繞點B逆時針旋轉(zhuǎn)90°后,得到A′O′B,且反比例函數(shù)y=的圖象恰好經(jīng)過斜邊A′B的中點C,若SABO=4,tan∠BAO=2,則k=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:數(shù)學課上,吳老師在求代數(shù)式x2﹣4x+5的最小值時,利用公式a2±2ab+b2=(a±b)2,對式子作如下變形:x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1,

因為(x﹣2)2≥0,

所以(x﹣2)2+1≥1,

x=2時,(x﹣2)2+1=1,

因此(x﹣2)2+1有最小值1,即x2﹣4x+5的最小值為1.

通過閱讀,解下列問題:

(1)代數(shù)式x2+6x+12的最小值為   ;

(2)求代數(shù)式﹣x2+2x+9的最大或最小值;

(3)試比較代數(shù)式3x2﹣2x2x2+3x﹣7的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為推進垃圾分類,推動綠色發(fā)展,某工廠購進甲、乙兩種型號的機器人用來進行垃圾分類,甲型機器人比乙型機器人每小時多分20kg,甲型機器人分類800kg垃圾所用的時間與乙型機器人分類600kg垃圾所用的時間相等。

1)兩種機器人每小時分別分類多少垃圾?

2)現(xiàn)在兩種機器人共同分類700kg垃圾,工作2小時后甲型機器人因機器維修退出,求甲型機器人退出后乙型機器人還需工作多長時間才能完成?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】據(jù)我囯古代《周髀算經(jīng)》記載,公元前1120年商高對周公說,將一根直尺折成一個直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括為“勾三,股四、弦五”.3、4、5這樣為三邊長能構成直角三角形的三個正整數(shù),稱為勾股數(shù).

(應用舉例)

觀察3,45; 5,12,13 7,2425;

可以發(fā)現(xiàn)這些勾股數(shù)的勾都是奇數(shù),且從3起就沒有間斷過,并且勾為3時,股,弦;勾為5時,股,弦

請仿照上面兩組樣例,用發(fā)現(xiàn)的規(guī)律填空:

1)如果勾為7,則股24=__________;弦25=___________.

2)如果勾用,且為奇數(shù))表示時,請用含有的式子表示股和弦,則股=________;弦=_______.

3)繼續(xù)觀察①4,3,5;②6,810;③815,17;…,可以發(fā)現(xiàn)各組的第一個數(shù)都是偶數(shù),且從4起也沒有間斷過.請你直接用為偶數(shù)且)的代數(shù)式來表示直角三角形的另一條直角邊和弦的長.

查看答案和解析>>

同步練習冊答案