【題目】如圖,矩形中,,對角線相交于,過點作交于點,為中點,連接交于點,交的延長線于點,下列個結(jié)論:①;②;③;④,⑤.正確的有( )個.
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】
根據(jù)BC=2AB,H為BC中點,可得△ABH為等腰直角三角形,HE=BH=HC,可得△CEH為等腰三角形,又∠BCD=90°,CE⊥BD,利用互余關(guān)系得出角的相等關(guān)系,根據(jù)基本圖形判斷全等三角形,特殊三角形進行判斷.
①在△BCE中,∵CE⊥BD,H為BC中點,
∴BC=2EH,又BC=2AB,
∴EH=AB,①正確;
②由①可知,BH=HE∴∠EBH=∠BEH,
又
∴∠ABG=∠HEC,②正確;
③由,得
同理:,∴,
∴△ABG≌△HEC,③錯誤;
④作AM⊥BD,則AM=CE,△AMD≌△CEB,
∵AD∥BC,
∴△ADG∽△HGB,
∴AGGH=2,
即△ABG的面積等于△BGH的面積的2倍,
根據(jù)已知不能推出△AMG的面積等于△ABG的面積的一半,
即S△GAD≠S四邊形GHCE,
∴④錯誤
⑤,
又∠ECH=∠CDE=∠BAO,∠BAO=∠BAH+∠HAC,
∴∠F=∠HAC,
∴CF=BD,⑤正確.
正確的有3個.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列從左邊到右邊的變形,是因式分解的是( )
A.y﹣5y﹣6=(y﹣6)(y+1)B.a+4a﹣3=a(a+4)﹣3
C.x(x﹣1)=x﹣xD.m+n=(m+n)(m﹣n)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:射線交于點,半徑,是射線上的一個動點(不與、重合),直線交于,過作的切線交射線于.
圖是點在圓內(nèi)移動時符合已知條件的圖形,在點移動的過程中,請你通過觀察、測量、比較,寫出一條與的邊、角或形狀有關(guān)的規(guī)律,并說明理由;
請你在圖中畫出點在圓外移動時符合已知條件的圖形,第題中發(fā)現(xiàn)的規(guī)律是否仍然存在?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點A、B分別在x軸負半軸和y軸正半軸上,點C(2,-2),CA、CB分別交坐標軸于D、E,CA⊥AB,且CA=AB.
(1)求點B的坐標;
(2)如圖2,連接DE,求證:BD-AE=DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)某批發(fā)商以每件50元的價格購進800件T恤,第一個月以單價80元銷售,售出了200件;第二個月如果單價不變,預(yù)計仍可售出200件,批發(fā)商為增加銷售量,決定降價銷售,根據(jù)市場調(diào)查,單價每降低1元,可多售出10件,但最低單價應(yīng)高于購進的價格;第二個月結(jié)束后,批發(fā)商將對剩余的T恤一次性清倉銷售,清倉是單價為40元,設(shè)第二個月單價降低元.
(1)填表:(不需化簡)
(2)如果批發(fā)商希望通過銷售這批T恤獲利9000元,那么第二個月的單價應(yīng)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知:正方形.
如圖,點、點分別在邊和上,且.此時,線段、的數(shù)量關(guān)系和位置關(guān)系分別是什么?請直接寫出結(jié)論.
如圖,等腰直角三角形繞直角頂點順時針旋轉(zhuǎn),當(dāng)時,連接、,此時中的結(jié)論是否成立,如果成立,請證明;如果不成立,請說明理由.
如圖,等腰直角三角形繞直角頂點順時針旋轉(zhuǎn),當(dāng)時,連接、,猜想溝與滿足什么數(shù)量關(guān)系時,直線垂直平分.請直接寫出結(jié)論.
如圖,等腰直角三角形繞直角頂點順時針旋轉(zhuǎn),當(dāng)時,連接、、、得到四邊形,則順次連接四邊形各邊中點所組成的四邊形是什么特殊四邊形?請直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標系xOy中,一次函數(shù)y=﹣x+5的圖象l1分別與x,y軸交于A,B兩點,正比例函數(shù)的圖象l2與l1交于點C(m,4).
(1)求m的值及l2的解析式;
(2)求S△AOC﹣S△BOC的值;
(3)一次函數(shù)y=kx+1的圖象為l3,且11,l2,l3不能圍成三角形,直接寫出k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題
(1)甲、乙、丙、丁四人做傳球游戲:第一次由甲將球隨機傳給乙、丙、丁中的某一人,從第二次起,每一次都由持球者將球再隨機傳給其他三人中的某一人.求第二次傳球后球回到甲手里的概率.(請用“畫樹狀圖”的方式給出分析過程)
(2)如果甲跟另外n(n≥2)個人做(1)中同樣的游戲,那么,第三次傳球后球回到甲手里的概率是________(請直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(-3,0),對稱軸為直線x=﹣1,給出四個結(jié)論: ①c>0; ②4a-2b+c>0. ③2a-b=0;④若點B(-1.5,y1)、C(-2.5,y2)為函數(shù)圖象上的兩點,則y1>y2; 其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com