【題目】如圖,在中,,,AD是的角平分線,,垂足為E.
求證:;
已知,求AC的長(zhǎng);
求證:.
【答案】(1)證明見解析;(2);(3)證明見解析.
【解析】
(1)先根據(jù)題意判斷出△ABC是等腰直角三角形,故,再由可知△BDE是等腰直角三角形,故DE,再根據(jù)角平分線的性質(zhì)即可得出結(jié)論;
(2)由(1)知,△BDE是等腰直角三角形,DE=BE=CD,再根據(jù)勾股定理求出BD的長(zhǎng),進(jìn)而可得出結(jié)論;
(3)先根據(jù)HL定理得出Rt△ACD≌Rt△AED,故AE,再由CD=BE可得出結(jié)論.
證明:在中,,,
是等腰直角三角形,
,
,
是等腰直角三角形,
.
是的角平分線,
,
;
解:由知,是等腰直角三角形,,
,
,
;
證明:是的角平分線,,
.
在與中,
,
≌,
.
由知,
.
故答案為:(1)證明見解析;(2);(3)證明見解析.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著“互聯(lián)網(wǎng)+”時(shí)代的到來,一種新型打車方式受到大眾歡迎,該打車方式的總費(fèi)用由里程費(fèi)和耗時(shí)費(fèi)組成,其中里程費(fèi)按x元/公里計(jì)算,耗時(shí)費(fèi)按y元/分鐘計(jì)算(總費(fèi)用不足9元按9元計(jì)價(jià)).小明、小剛兩人用該打車方式出行,按上述計(jì)價(jià)規(guī)則,其打車總費(fèi)用、行駛里程數(shù)與打車時(shí)間如表:
時(shí)間(分鐘) | 里程數(shù)(公里) | 車費(fèi)(元) | |
小明 | 8 | 8 | 12 |
小剛 | 12 | 10 | 16 |
(1)求x,y的值;
(2)如果小華也用該打車方式,打車行駛了11公里,用了14分鐘,那么小華的打車總費(fèi)用為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一項(xiàng)工程,甲隊(duì)單獨(dú)做需40天完成,若乙隊(duì)先做30天后,甲、乙兩隊(duì)一起合做20天恰好完成任務(wù),請(qǐng)問:
(1)乙隊(duì)單獨(dú)做需要多少天才能完成任務(wù)?
(2)現(xiàn)將該工程分成兩部分,甲隊(duì)做其中一部分工程用了x天,乙隊(duì)做另一部分工程用了y天,若x; y都是正整數(shù),且甲隊(duì)做的時(shí)間不到15天,乙隊(duì)做的時(shí)間不到70天,那么兩隊(duì)實(shí)際各做了多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題
(1)探究新知:如圖1,已知△ABC與△ABD的面積相等,試判斷AB與CD的位置關(guān)系,并說明理由.
(2)結(jié)論應(yīng)用:① 如圖2,點(diǎn)M,N在反比例函數(shù) (k>0)的圖象上,過點(diǎn)M作ME⊥y軸,過點(diǎn)N作NF⊥x軸,垂足分別為E,F(xiàn).試證明:MN∥EF.
② 若①中的其他條件不變,只改變點(diǎn)M,N的位置如圖3所示,請(qǐng)判斷 MN與EF是否平行?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y= 與y軸交于點(diǎn)A,與直線y=﹣ 交于點(diǎn)B,以AB為邊向右作菱形ABCD,點(diǎn)C恰與原點(diǎn)O重合,拋物線y=(x﹣h)2+k的頂點(diǎn)在直線y=﹣ 上移動(dòng).若拋物線與菱形的邊AB、BC都有公共點(diǎn),則h的取值范圍是( )
A.﹣2
B.﹣2≤h≤1
C.﹣1
D.﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y= (x>0)的圖象經(jīng)過點(diǎn)A(1,2)和點(diǎn)B(m,n)(m>1),過點(diǎn)B作y軸的垂線,垂足為C.
(1)求該反比例函數(shù)解析式;
(2)當(dāng)△ABC面積為2時(shí),求點(diǎn)B的坐標(biāo).
(3)P為線段AB上一動(dòng)點(diǎn)(P不與A、B重合),在(2)的情況下,直線y=ax﹣1與線段AB交于點(diǎn)P,直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)A、B、C在坐標(biāo)軸上,且A、B、C的坐標(biāo)分別為、、過點(diǎn)A的直線AD與y軸正半軸交于點(diǎn)D,
求直線AD和BC的解析式;
如圖2,點(diǎn)E在直線上且在直線BC上方,當(dāng)的面積為6時(shí),求E點(diǎn)坐標(biāo);
在的條件下,如圖3,動(dòng)點(diǎn)M在直線AD上,動(dòng)點(diǎn)N在x軸上,連接ME、NE、MN,當(dāng)周長(zhǎng)最小時(shí),求周長(zhǎng)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+ x+1(a≠0)與x軸交于A,B兩點(diǎn),其中點(diǎn)B坐標(biāo)為(2,0).
(1)求拋物線的解析式和點(diǎn)A的坐標(biāo);
(2)如圖1,點(diǎn)P是直線y=﹣x上的動(dòng)點(diǎn),當(dāng)直線OP平分∠APB時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖2,在(2)的條件下,點(diǎn)C是直線BP上方的拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)C作y軸的平行線,交直線BP于點(diǎn)D,點(diǎn)E在直線BP上,連結(jié)CE,以CD為腰的等腰△CDE的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線AB∥射線CD,∠CAB與∠ACD的平分線交于點(diǎn)E,AC=4,點(diǎn)P是射線AB上的一動(dòng)點(diǎn),連結(jié)PE并延長(zhǎng)交射線CD于點(diǎn)Q.給出下列結(jié)論:①△ACE是直角三角形;②S四邊形APQC=2S△ACE;③設(shè)AP=x,CQ=y,則y關(guān)于x的函數(shù)表達(dá)式是y=﹣x+4(0≤x≤4),其中正確的是( 。
A. ①②③B. ①②C. ①③D. ②③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com