17.先化簡(jiǎn),后求值.
2(a2b+ab2)-(2ab2-1+a2b)-2,其中(2b-1)2+|a+2|=0.

分析 先利用非負(fù)數(shù)的性質(zhì)求出a和b的值,再去括號(hào)、合并得到原式=a2b-1,然后把a(bǔ)和b的值代入計(jì)算即可.

解答 解:∵(2b-1)2+|a+2|=0,
∴b=$\frac{1}{2}$,a=-2,
原式=2a2b+2ab2-2ab2+1-a2b-2
=a2b-1,
當(dāng)a=-2,b=$\frac{1}{2}$,原式=(-2)2×$\frac{1}{2}$-1=2-1=1.

點(diǎn)評(píng) 本題考查了整式的加減-化簡(jiǎn)求值:給出整式中字母的值,求整式的值的問題,一般要先化簡(jiǎn),再把給定字母的值代入計(jì)算,得出整式的值,不能把數(shù)值直接代入整式中計(jì)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.計(jì)算:
(1)7-2÷(-$\frac{1}{2}$)+3  
(2)(-34)÷$\frac{9}{4}$×$\frac{4}{9}$+(-16)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知在△ABC中,BA=BC,點(diǎn)D是CB延長線上一點(diǎn),DF⊥AC,垂足為F,DF和AB交于點(diǎn)E.求證:△DBE是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.某校八年級(jí)舉行英語演講比賽,購買A,B兩種筆記本作為獎(jiǎng)品.這兩種筆記本的單價(jià)分別是12元和8元,根據(jù)比賽設(shè)獎(jiǎng)情況需購買這兩種筆記本共30本,并且所購買的A種筆記本的數(shù)量多于B種筆記本數(shù)量,但又不多于B種筆記本數(shù)量2倍,如果設(shè)他們買A種筆記本n本,買這兩種筆記本共花費(fèi)w元.
(1)請(qǐng)寫出w(元)關(guān)于n(本)的函數(shù)關(guān)系式,并求出自變量n的取值范圍;
(2)請(qǐng)你幫助他們計(jì)算購買這兩種筆記本各多少時(shí),花費(fèi)最少,此時(shí)的花費(fèi)是多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在△ABC中,D是AC上一點(diǎn),聯(lián)結(jié)BD,∠CBD=∠A.
(1)求證:△CBD∽△CAB;
(2)若D是AC中點(diǎn),CD=3,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.已知:在四邊形ABCD中,∠ABC=90°,∠C=60,AB=$\frac{\sqrt{3}}{2}$,BC=1+$\sqrt{3}$,CD=2
(1)求tan∠ABD的值; 
(2)求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)為A(3,0),B(1,1),C(0,-2),將△ABC關(guān)于y軸對(duì)稱得到△A1B1C1.請(qǐng)畫出平面直角坐標(biāo)系,并在其中畫出△ABC和△A1B1C1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,拋物線y=mx2-4mx+4m+3的頂點(diǎn)為A.
(1)求點(diǎn)A的坐標(biāo);
(2)將線段OA沿x軸向右平移2個(gè)單位長度得到線段O′A′.
①直接寫出點(diǎn)O′和A′的坐標(biāo);
②若拋物線y=mx2-4mx+4m+3與四邊形AOO′A′有且只有兩個(gè)公共點(diǎn),結(jié)合函數(shù)的圖象,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上位于點(diǎn)A左側(cè)一點(diǎn),且AB=20,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒5個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t<0)秒.
(1)寫出數(shù)軸上點(diǎn)B表示的數(shù)-12;點(diǎn)P表示的數(shù)8-5t(用含t的代數(shù)式表示)
(2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā),問多少秒時(shí)P、Q之間的距離恰好等于2?
(3)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向左勻速到家動(dòng),若點(diǎn)P、Q同時(shí)出發(fā),問多少秒時(shí)P、Q之間的距離恰好又等于2?
(4)若M為AP的中點(diǎn),N為BP的中點(diǎn),在點(diǎn)P運(yùn)動(dòng)的過程中,線段MN的長度是否發(fā)生變化?若變化,請(qǐng)說明理由,若不變,請(qǐng)他畫出圖形,并求出線段MN的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案