8.如圖,已知在△ABC中,BA=BC,點(diǎn)D是CB延長線上一點(diǎn),DF⊥AC,垂足為F,DF和AB交于點(diǎn)E.求證:△DBE是等腰三角形.

分析 首先依據(jù)等腰三角形的性質(zhì)可得到∠A=∠C,然后依據(jù)等角的余角相等可證明∠D=∠AEF,然后結(jié)合對頂角的性質(zhì)可證明∠D=∠DEB.

解答 證明:∵BA=BC,
∴∠A=∠C.
∵DF⊥AF,
∴∠A+∠AEF=90°,∠C+∠D=90°.
∴∠AEF=∠D.
∵∠D=∠AEF,
∴∠D=∠DEB.
∴BD=BE.
∴△DBE是等腰三角形.

點(diǎn)評 本題主要考查的是等腰三角形的性質(zhì)和判定,熟練掌握相關(guān)定理是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.如圖,以點(diǎn)O為端點(diǎn)按順時(shí)針方向依次作射線OA、OB、OC、OD,且∠AOC=∠BOD=α(0°<α<180°)
(1)寫出圖中一對相等的角(已知條件中的等角除外),并說明理由.
(2)當(dāng)α為多少度時(shí),∠AOD和∠BOC互余?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.如圖,已知∠AOB=90°,射線0A繞點(diǎn)O逆時(shí)針方向以毎秒6°的速度旋轉(zhuǎn)(當(dāng)旋轉(zhuǎn)角度等于360°時(shí),OA停止旋轉(zhuǎn)),同時(shí)0B繞點(diǎn)O以每秒2°的速度旋轉(zhuǎn)(當(dāng)OA停止旋轉(zhuǎn)時(shí),OB同樣 停止旋轉(zhuǎn)).求當(dāng)OA旋轉(zhuǎn)多少秒,旋轉(zhuǎn)后的OA與OB形成的角度為50°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.已知關(guān)于x的分式方程$\frac{3x}{x-6}$-2=$\frac{m}{x-6}$的解是正數(shù),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.已知a、b互為相反數(shù),c、d互為倒數(shù),|m|=4,求2a+2b-(cd)2015-3m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.如圖,一次函數(shù)y1=kx+b的圖象與x軸、y軸分別交于點(diǎn)A、B,與一次函數(shù)y2=x的圖象交于點(diǎn)M,點(diǎn)A的坐標(biāo)為(6,0),點(diǎn)M的橫坐標(biāo)為2,過點(diǎn)P(a,0),作x軸的垂線,分別交函數(shù)y=kx+b和y=x的圖象于點(diǎn)C、D.
(1)求一次函數(shù)y1=kx+b的表達(dá)式;
(2)若點(diǎn)M是線段OD的中點(diǎn),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖,點(diǎn)A從原點(diǎn)出發(fā)沿?cái)?shù)軸向左運(yùn)動(dòng),同時(shí),點(diǎn)B也從原點(diǎn)出發(fā)沿?cái)?shù)軸向右運(yùn)動(dòng),4秒后,兩點(diǎn)相距16個(gè)單位長度,已知點(diǎn)B的速度是點(diǎn)A的速度的3倍(速度單位:單位長度/秒).
(1)求出點(diǎn)A、點(diǎn)B運(yùn)動(dòng)的速度,并在數(shù)軸上標(biāo)出A、B兩點(diǎn)從原點(diǎn)出發(fā)運(yùn)動(dòng)4秒時(shí)的位置;
(2)若A、B兩點(diǎn)從(1)中的位置開始,仍以原來的速度同時(shí)沿?cái)?shù)軸向左運(yùn)動(dòng),再過幾秒時(shí),原點(diǎn)恰好處在AB的中點(diǎn)?
(3)若A、B兩點(diǎn)從(1)中的位置開始,仍以原來的速度同時(shí)沿?cái)?shù)軸向左運(yùn)動(dòng)時(shí),另一點(diǎn)C同時(shí)從原點(diǎn)O位置出發(fā)向B點(diǎn)運(yùn)動(dòng),且C的速度是點(diǎn)A的速度的一半;當(dāng)點(diǎn)C運(yùn)動(dòng)幾秒時(shí),C為AB的中點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.先化簡,后求值.
2(a2b+ab2)-(2ab2-1+a2b)-2,其中(2b-1)2+|a+2|=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.如圖,△ABC與△DCB中,AC與BD交于點(diǎn)E,且∠A=∠D,AB=DC
(1)求證:△ABE≌△DCE;
(2)若∠A=90°,AC=16,AB=8,求EC的長.

查看答案和解析>>

同步練習(xí)冊答案