【題目】小宇想測量位于池塘兩端的A、B兩點(diǎn)的距離.他沿著與直線AB平行的道路EF行走,當(dāng)行走到點(diǎn)C處,測得∠ACF=45°,再向前行走100米到點(diǎn)D處,測得∠BDF=60°.若直線AB與EF之間的距離為60米,求A、B兩點(diǎn)的距離.

【答案】解:作AM⊥EF于點(diǎn)M,作BN⊥EF于點(diǎn)N,如右圖所示,

由題意可得,AM=BN=60米,CD=100米,∠ACF=45°,∠BDF=60°,
∴CM= 米,
DN= 米,
∴AB=CD+DN﹣CM=100+20 ﹣60=(40+20 )米,
即A、B兩點(diǎn)的距離是40+20 米.
【解析】根據(jù)題意作出合適的輔助線,畫出相應(yīng)的圖形,可以分別求得CM、DN的長,由于AB=CN﹣CM,從而可以求得AB的長.本題考查解直角三角形的應(yīng)用,解題的關(guān)鍵是明確題意,畫出相應(yīng)的圖形,利用數(shù)形結(jié)合的思想解答問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點(diǎn)A(3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y= (x>0)的圖象經(jīng)過點(diǎn)D,且與邊BC交于點(diǎn)E,則點(diǎn)E的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于x的一元二次方程kx2﹣3x﹣1=0有兩個(gè)不相等的實(shí)根,那么k的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖中的折線ABC表示某汽車的耗油量y(單位:L/km)與速度x(單位:km/h)之間的函數(shù)關(guān)系(30≤x≤120),已知線段BC表示的函數(shù)關(guān)系中,該汽車的速度每增加1km/h,耗油量增加0.002L/km.

(1)當(dāng)速度為50km/h、100km/h時(shí),該汽車的耗油量分別為L/km、L/km.
(2)求線段AB所表示的y與x之間的函數(shù)表達(dá)式.
(3)速度是多少時(shí),該汽車的耗油量最低?最低是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:
(1)( +1)0+|﹣2|﹣31
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,點(diǎn)E在邊AB上,點(diǎn)F在邊BC上,且BE=CF,EF⊥DF,求證:BF=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:( ﹣3)0﹣2sin30°﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為保障我國海外維和部隊(duì)官兵的生活,現(xiàn)需通過A港口、B港口分別運(yùn)送100噸和50噸生活物資.已知該物資在甲倉庫存有80噸,乙倉庫存有70噸,若從甲、乙兩倉庫運(yùn)送物資到港口的費(fèi)用(元/噸)如表所示:

港口

運(yùn)費(fèi)(元/臺)

甲庫

乙?guī)?/span>

A港

14

20

B港

10

8


(1)設(shè)從甲倉庫運(yùn)送到A港口的物資為x噸,求總運(yùn)費(fèi)y(元)與x(噸)之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求出最低費(fèi)用,并說明費(fèi)用最低時(shí)的調(diào)配方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在1,2,3,4,5這五個(gè)數(shù)中,先任意選出一個(gè)數(shù)a,然后在余下的數(shù)中任意取出一個(gè)數(shù)b,組成一個(gè)點(diǎn)(a,b),求組成的點(diǎn)(a,b)恰好橫坐標(biāo)為偶數(shù)且縱坐標(biāo)為奇數(shù)的概率.(請用“畫樹狀圖”或“列表”等方法寫出分析過程)

查看答案和解析>>

同步練習(xí)冊答案